• Title/Summary/Keyword: geometry parameters

Search Result 1,109, Processing Time 0.026 seconds

Tailoring fabric geometry of plain-woven composites for simultaneously enhancing stiffness and thermal properties

  • Zhou, Xiao-Yi;Wang, Neng-Wei;Xiong, Wen;Ruan, Xin;Zhang, Shao-Jin
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.489-499
    • /
    • 2022
  • This paper proposes a numerical optimization method to design the mesoscale architecture of textile composite for simultaneously enhancing mechanical and thermal properties, which compete with each other making it difficult to design intuitively. The base cell of the periodic warp and fill yarn system is served as the design space, and optimal fibre yarn geometries are found by solving the optimization problem through the proposed method. With the help of homogenization method, analytical formulae for the effective material properties as functions of the geometry parameters of plain-woven textile composites were derived, and they are used to form the inverse homogenization method to establish the design problem. These modules are then put together to form a multiobjective optimization problem, which is formulated in such a way that the optimal design depends on the weight factors predetermined by the user based on the stiffness and thermal terms in the objective function. Numerical examples illustrate that the developed method can achieve reasonable designs in terms of fibre yarn paths and geometries.

Modal parameter identification of civil structures using symplectic geometry mode decomposition

  • Feng Hu;Lunhai Zhi;Zhixiang Hu;Bo Chen
    • Wind and Structures
    • /
    • v.36 no.1
    • /
    • pp.61-73
    • /
    • 2023
  • In this article, a novel structural modal parameters identification methodology is developed to determine the natural frequencies and damping ratios of civil structures based on the symplectic geometry mode decomposition (SGMD) approach. The SGMD approach is a new decomposition algorithm that can decompose the complex response signals with better decomposition performance and robustness. The novel method firstly decomposes the measured structural vibration response signals into individual mode components using the SGMD approach. The natural excitation technique (NExT) method is then used to obtain the free vibration response of each individual mode component. Finally, modal natural frequencies and damping ratios are identified using the direct interpolating (DI) method and a curve fitting function. The effectiveness of the proposed method is demonstrated based on numerical simulation and field measurement. The structural modal parameters are identified utilizing the simulated non-stationary responses of a frame structure and the field measured non-stationary responses of a supertall building during a typhoon. The results demonstrate that the developed method can identify the natural frequencies and damping ratios of civil structures efficiently and accurately.

A mathematical model to predict fatigue notch factor of butt joints

  • Nguyen, Ninh T.;Wahab, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.467-471
    • /
    • 1998
  • A mathematical model is developed to predict the fatigue notch factor of butt welds subject to number of parameters such as weld geometry, residual stresses under dynamic combined loading conditions (tensile and bending). Linear elastic fracture mechanics, finite element analysis, dimensional analysis and superposition approaches are used for the modelling. The predicted results are in good agreement with the available experimental data. As a result, scatters of the fatigue data can be significantly reduced by plotting S-N curve as ($S{\cdot}K_f$) vs. N.

Crystal Geometry Optimization of β-Lactam Antibiotics Using MMFF Parameters

  • 원영도
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.10
    • /
    • pp.944-952
    • /
    • 1995
  • A generic force field approach has been applied to geometry optimization of penam and cephem crystals. The crystalline state energy and force evaluation with the universal force field (MMFF: Merck Molecular Force Field) results in good agreements with the crystallographic data. Bond lengths are usually correct to within 0.02 Å and bond angles usually to within 2.5°. The conformation of the β-lactam bicyclic rings in the crystal environment is also well reproduced. The results thus demonstrate the applicability of MMFF to modeling of newer molecular constructs in condensed phase.

A Study on the Prediction of the Kerf Width Geometry and the Heat-affected zone in laser Cutting of the alloy Tool Steels(STD11) (합금공구강(STD11)의 레이저 절단에서 절단폭 형상 예측과 열 영향부에 관한 연구)

  • Cho, Y.M.;You, U.J.;Kim, J.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.130-137
    • /
    • 1995
  • With the rapid growth of the die and mold, the new die making method has been developed. Especially, the laser is very useful, because it has a very fast cutting speed and is possible to manufacture complicated geometry. The quality of the laser cut is to be evaluated with respect to some characteristic quality parameters such as kerf width geometry, roughness and heat affected zone. This paper describes the laser cut characteristic(heat-affected zone) of the alloy tool steels(STD11) and the prediction of the kerf width genmetry by the FEM. On using the oxidation heat and laser beam, the prediction of kerf geometry is more accurate than that only by the laser beam. After laser cutting, the heat-affected zone is generated on the cutting cross section. The magnitude of hardness on the cutting cross section was similar to that of the heat treatment. It was possible to predict heat-affected zone by using the FEM program.

  • PDF

Selection of Internal Clearance for Automotive Wheel Bearings Considering an Assembling Procedure (조립과정을 고려한 차륜용 베어링의 내부틈새 선정)

  • 현준수;안태길;김성근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.51-57
    • /
    • 2000
  • An automotive wheel bearing is one of the most important components to guarantee the service life of a passenger car. The endurance lift of a bearing is affected by many parameters such as material properties, heat treatment, lubrication conditions, temperature, loading conditions, geometry, internal clearance and so on. Under the same geometry and loading conditions, the internal clearance is the most effective parameters on the endurance lift of a bearing. Generally, bearings have the longest lift with a little negative internal clearance. But it is very difficult to measure and modify the internal clearance after a wheel bearing is assembled. In this paper, we analyze the effect of an assembling procedure on the clearance of wheel bearings and suggest a method to determine optimal clearance for automotive wheel bearings by selecting initial bearing clearance.

  • PDF

DEVELOPMENT OF PROBLEM-SPECIFIC GRID GENERATION PROGRAM FOR EDUCATIONAL PURPOSE (문제-지향적 교육용 격자 생성 프로그램의 개발)

  • Ryu, G.M.;Kim, Byoungsoo
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.26-31
    • /
    • 2015
  • A grid generation program for specific problems is introduced. The program allows users to easily generate grid system for specific geometry such as an airfoil, cylinder, wedge, flat plate, and nozzle. Generating grid system for those problems can be proceeded with minimum user inputs such as geometry-defining parameters and grid-defining parameters. By using this program learning stage for preprocessing of CFD application can be efficiently shorten and novice students can learn and acquire experience by trying out grid generation and CFD solution by themselves.

A Study on the Seam tracking and Control of the Welding Quality Using a Infrared sensor (적외선 센서를 이용한 용접선 추적 및 용접품질 모니터링에 관한 연구)

  • Kim I.S.;Son J.S.;Kim H.H.;Seo J.H.;Kim I.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.301-302
    • /
    • 2006
  • In this paper, the possibilities of the Infra-red sensor in sensing and control of the bead geometry in the automated welding process are presented. Infra-red sensor is a well-known method to deal with the problems with a high degree of fuzziness so that the sensor is employed to build the relationship between process variables and the quality characteristic the proposed above respectively. Based on several neural networks, the mathematical models are derived from extensive experiments with different welding parameters and complex geometrical features. The developed system enables to select the optimal welding parameters and control the desired weld dimensions during arc welding process.

  • PDF

Kinematics and Design of CNC Drill Grinding Machine (CNC 드릴 연삭기 구조 및 설계)

  • 강성균
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.555-559
    • /
    • 1996
  • Based on the general drill grinding mechanism, termed the helical grinding system, the conceptual design of 5 axes CNC drill grinding machine is proposed. Unique determination of the grinding parameters for precise production of the desired flank geometry is discussed by utilizing a mathematical model. Also, different combinations of grinding parameters are mentioned in order to produce various drill geometries (conical, cylindrical, and planar drill) on the single proposed CNC machine. A manual helical grinding machine has been fabricated and consequently helical drills have been ground in order to check the feasibility of the proposed grinding mechanism and its functionality.

  • PDF

A V­Groove $CO_2$ Gas Metal Arc Welding Process with Root Face Height Using Genetic Algorithm

  • Ahn, S.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.15-23
    • /
    • 2003
  • A genetic algorithm was applied to an arc welding process to determine near optimal settings of welding process parameters which produce good weld quality. This method searches for optimal settings of welding parameters through systematic experiments without a model between input and output variables. It has an advantage of being able to find optimal conditions with a fewer number of experiments than conventional full factorial design. A genetic algorithm was applied to optimization of weld bead geometry. In the optimization problem, the input variables were wire feed rate, welding voltage, and welding speed, root opening and the output variables were bead height, bead width, penetration and back bead width. The number of level for each input variable is 8, 16, 8 and 3, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions, 3,072 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions from less than 48 experiments.

  • PDF