• Title/Summary/Keyword: geometry design

Search Result 2,070, Processing Time 0.032 seconds

Computer-Aided Process Planning System of Cold Forging and its Verification by F.E. Simulation (냉간단조 공정설계 시스템과 유한요소해석에 의한 검증)

  • Lee, E.H.;Kim, D.J.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.43-52
    • /
    • 1996
  • This paper describes interactive computer procedures for design the forming sequences in cold forging. This system is implemented on the personal computer and its environment is a commercial AutoCAD system. The programming language. AutoLISP, was used for the configuration of the system. Since the process of metal forming can be considered as a transformation of geometry, treatment of the geometry of the part is a key in process planning. To recognize the part section geometry, the section entity representation, the section coordinate-redius representation and the section primitive geometru were adopted. This system includes six major modules such as input module, forging design module, forming sequence design module, die design module, FEM verification module and output module which are used independently or in all. The sequence drawing wigh all dimensions, which includes the dimensional tolerances and the proper sequence of operations, can generate under the environment of AutoCAD. The acceptable forming sequences can be verified further, using the FE simulation.

  • PDF

Addendum Surface Modeling in Draw Die Design for Stamping Automotive Panels (자동차 프레스 패널 성형을 위한 드로 금형의 어덴덤 곡면 모델링)

  • Chung, Yunchan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.1018-1024
    • /
    • 2013
  • In the process of draw die design for stamping automotive press panels, the addendum surfaces generated in metal forming simulation software cannot be used in downstream processes such as machining and making draw dies because simulation tools use simple discrete models for the surface geometry. The downstream processes require more precise and continuous geometric models such as NURBS surfaces. Generally, automotive die engineers manually regenerate the addendum surface geometry using the discrete model. This paper presents an automated geometric modeling process for generating addendum surfaces using draft surface models. The design parameters of the section curve for the addendum surfaces are extracted automatically from the draft geometry. Using the extracted design parameters, smooth addendum surfaces are generated automatically as NURBS surfaces. The generated surfaces are $G^1$ continuous with the part surface and the binder surface, and can be used in downstream processes.

A Study on Screw Design Parameters of Co-Rotating Twin Screw Extruder (동회전 2축 스크류 압출기의 스크류 설계 파라미터에 관한 연구)

  • 최부희;최상훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.217-226
    • /
    • 2003
  • Twin screw extruders are the heart of the polymer processing industry. They are used at some stage in nearly all polymer processing operations. This paper is concerned with the basic elements of the extruder design. The proper design of the geometry of the extruder screw is of crucial importance to the proper functioning of the extruder. If the material transport instabilities occur as a result of improper screw geometry, even the most sophisticated computerized control system cannot solve the problem. For this purpose, a characteristic design on the screw flights shape of the closely intermeshing co-rotating twin screw extruder. This paper presents design parameters of double flighted screw and triple flighted screw elements, and characteristics of various screw channel area versus screw diameter ratio, K value, in the barrel of screw extruder.

Automated Structural Design System Using Fuzzy Theory and Neural Network

  • Lee, Joon-Seong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.43-48
    • /
    • 2002
  • This paper describes an automated computer-aided engineering (CAE) system for three-dimensional structures. An automatic finite element mesh-generation technique, which is based on fuzzy knowledge processing and computational geometry techniques, is incorporated into the system, together with a commercial FE analysis code, and a commercial solid modeler. The system allows a geometry model of interest to be automatically converted to different FE models, depending on the physical phenomena of the structures to be analyzed, i.e., electrostatic analysis, stress analysis, modal analysis, and so on. Also, with the aid of multilayer neural networks, the present system allows us to obtain automatically a design window in which a number of satisfactory design solutions exist in a multi-dimensional design parameter space. The developed CAE system is successfully applied to evaluate an electrostatic micromachines.

Name, Quilt and Transformation Geometry

  • Lee Brenda
    • Research in Mathematical Education
    • /
    • v.9 no.3 s.23
    • /
    • pp.285-294
    • /
    • 2005
  • The author has been teaching with an instructional module consisting of many mathematical concepts, based on designs formed by personal names or words to arouse students' interesting in learning mathematics. This module has been growing since it was first used as a supplementary lesson for calculus students. Now it consists of concepts that connect with mathematical topics such as number sense, algebraic thinking, geometry, and statistical reasoning, as well as other subjects such as art and quilt design. With its content we can provide our students the basic mathematical knowledge needed for further study in their own fields. In this article, we will demonstrate the latest development of this instructional module, which makes connections between mathematical knowledge and the design of personal quilt patterns. We will exhibit a 'Quilt of Nations' which consists of the designed quilt blocks of different countries, such as USA, Japan, Taiwan, Korea and others, as well as a quilt design using the abbreviation of this seminar. Then we will talk about how the connections are built, and how to design these mathematically rich, uniquely created, beautifully designed, and personalized quilt block patterns.

  • PDF

Organic Geometry in Isabel Toledo's Collections (이사벨 톨리도 컬렉션에 나타난 유기적 기하학)

  • Yim, Eun-Hyuk
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.18 no.4
    • /
    • pp.63-75
    • /
    • 2016
  • This study examines the organic geometry in Isabel Toledo's collections in terms of the practicality of American sportswear tradition. This study conducts literary survey combined with case analysis of Toledo's works from her debut collection in 1985 to the recent ones. The organic geometry in Toledo's designs refers to the conversion of two-dimensional garment patterns into three-dimensional garment forms with the body as a medium, which is classified into the following categories in this study. First, 'fluidity' describes Toledo's highly fluid jersey dresses which maintain consistent structures by patchwork draping and suspension technique. Second, 'reductionist structure' illustrates that simple geometric shapes such as circles and squares disappear as soon as worn on the body. Third, 'origami construction' explains folding two-dimensional fabrics into three-dimensional forms, which causes the outlines of the body to appear abstract. Toledo's designs deliver the tradition of American sportswear through the organic geometry of garment construction. Toledo's works are authentic American in the aspects that they are functional and modern; they satisfy the practical needs, prioritize the movements of wearers, pursue multi-functions, and their ornamental elements are accompanied by the construction of garments. Isabel Toledo presents designs drawing on her unwavering aesthetics while continuously developing and experimenting creative ways of garment construction.

  • PDF

A Study on the Computer-Aided Forging Design for Rib/Web Shaped Parts (리브/웨브 형상을 갖는 부품의 단조품설계 자동화에 관한 연구)

  • 최재찬;김병민;이언호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.768-776
    • /
    • 1994
  • This paper describes computer-aided forging design for rib/web shaped parts. In manufacturing a part by means of forging process, the first step is to design the forging. This is done by modifying the given machined part geometry according to the requirements of the forging process. Traditionally, this is done by experienced forging designers using empirical forging design guidelines. Generally, it would be neither possible nor practical to develop a system which encompasses the design of all types of forgings. Accordingly, forging design can be simplified by considering critical two dimensional cross sections of the machined part geometry. This system is composed of three modules(process variable decision module, forging design module and redesign module) and each module is carried out in regular sequence. In the process variable decision module, first of all, the undercut is checked and modified, and then deep recesses and holes difficult to forge are eliminated. Also parting line, forging plane, forging plan view area, forging weight and maximum size(maximum height or width)are determined. In the forging design module, the magnitude of various allowances, draft angle, minimum web thickness, corner and fillet radius are determined and then geometry modification is performed. Finally, since the design rules and databases used in this system are based on parameters of the forging geometry, such as the trimmed forging plan area, forging weight, forging maxmum size, plausible estimates need to be made for these parameters. Therefore, in the re-design module, the design process is iterated until a satisfactory forging is obtained.

Study on the Minimization of Shape Parameters by Reverse Design of an Axial Turbine Blade (축류형 터빈 익형의 역설계에 의한 최소 형상변수에 관한 연구)

  • Cho, Soo-Yong;Oh, Koon-Sup;Yoon, Eui-Soo;Choi, Bum-Seog
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.4 s.9
    • /
    • pp.30-37
    • /
    • 2000
  • Several reverse design methods are developed and applied to the suction or pressure surface for finding design values of blade geometry for a given axial turbine blade. Re-designed blade profiles using shape parameters are compared with measured blade data. Essential shape parameters for blade design are induced by the procedure of reverse design for best fitting. Characteristics of shape parameters are evaluated through the system design method and restriction conditions of structural stability or aerodynamic flow loss. Some of shape parameters i.e blade radius or exit blade angle etc., are classified to weakly adjustable shape parameters, otherwise strongly adjustable shape parameters which would be applied for controlling blade shape. Average deviation values between the measured data and re-designed blade using shape parameters are calculated for each design method. Comparing with the average deviation for a given blade geometry, minimum shape parameters required to design a blade geometry are obtained.

  • PDF

An Analysis on the Variation of the Wheel/Rail Contact Geometry with the Wheel Wear of EMU (전동차 차륜 마모에 따른 차륜/레일 기하학적 접촉 특성 변화 분석)

  • Hur, Hyun-Moo;Park, Joon-Hyuk;You, Won-Hee;Park, Tae-Won
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.854-859
    • /
    • 2008
  • In a railway vehicle, contact between wheel and rail is a peculiar characteristic and variations of wheel and rail profile influence on the dynamic characteristics of railway vehicle. Thus the variations of the wheel and rail profile are very important in railway dynamics. Recently a research relating to active steering to improve the curving performance of vehicle is progressing actively at home and abroad. In this field, a pre-study for the wheel/rail contact geometry is needed and especially the variation of the wheel/rail contact geometry with wheel wear is the key design parameter to develop the controller of the active steering bogie. In this paper, we have experimentally studied to analyze the variation of the wheel/rail contact geometry with wheel wear as a pre-study to develop the active steering bogie for electric multiple unit (EMU). For this, we have made an experiment with EMU operating in curving area. We have measured the wear profiles of the wheel of the test vehicle and analyzed the wheel/rail contact geometry with a mileage of the test vehicle. In experiment with test vehicle, we have got the useful data to design the steering controller of the wheelset.

  • PDF