• Title/Summary/Keyword: geometry control method

Search Result 298, Processing Time 0.039 seconds

Theoretical Consideration of Nondestructive Testing by use of Vertical Magnetization and Magneto-Optical Sensor

  • Lee, Jinyi;Tetsuo Shoji;Dowon Seo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.640-648
    • /
    • 2004
  • This paper describes a new magnetization method for non-destructive testing with magneto-optical sensor (denoted as MO sensor) which have the following characteristic : high observation sensitivity, independence of the crack orientation, and precise imaging of a complex crack geometry such as multiple cracks. When a magnetic field is applied normally to the surface of a specimen which is significantly larger than its defects, approximately the same magnetic charge per unit area occurs on the surface of the specimen. If there is a crack in the specimen, magnetic charge per unit area has the same value at the bottom of the crack. The distribution of the vertical component of the magnetic flux density, B$\_$Z/, is almost uniform over the no-crack area (denoted as B$\_$Z,BASE/), while the magnetic flux density is smaller in the surroundings of the crack(denoted as B$\_$Z,CRACK/) If B$\_$Z, BASE/ is a bit larger than the saturated magnetic flux density of the MO sensor (B$\_$s/) , then small magnetic domains occur over the crack area and a large domain over the non-crack area because B$\_$Z,CRACK/ is smaller than B$\_$s/.

Adaptation of Motion Capture Data of Human Arms to a Humanoid Robot Using Optimization

  • Kim, Chang-Hwan;Kim, Do-Ik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2126-2131
    • /
    • 2005
  • Interactions of a humanoid with a human are important, when the humanoid is requested to provide people with human-friendly services in unknown or uncertain environment. Such interactions may require more complicated and human-like behaviors from the humanoid. In this work the arm motions of a human are discussed as the early stage of human motion imitation by a humanoid. A motion capture system is used to obtain human-friendly arm motions as references. However the captured motions may not be applied directly to the humanoid, since the differences in geometric or dynamics aspects as length, mass, degrees of freedom, and kinematics and dynamics capabilities exist between the humanoid and the human. To overcome this difficulty a method to adapt captured motions to a humanoid is developed. The geometric difference in the arm length is resolved by scaling the arm length of the humanoid with a constant. Using the scaled geometry of the humanoid the imitation of actor's arm motions is achieved by solving an inverse kinematics problem formulated using optimization. The errors between the captured trajectories of actor arms and the approximated trajectories of humanoid arms are minimized. Such dynamics capabilities of the joint motors as limits of joint position, velocity and acceleration are also imposed on the optimization problem. Two motions of one hand waiving and performing a statement in sign language are imitated by a humanoid through dynamics simulation.

  • PDF

Dynamic Analysis of Air Operated Globe Valve (공기구동형 글로브밸브의 동적거동해석)

  • 양상민;박종학;김동진;허태영;김봉호;신성기;김찬용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1022-1025
    • /
    • 2003
  • Although the globe is the most typical valve to control high pressure drop in piping system, it is very hard to figure out the characteristics of flow field in the globe valve caused by its complex geometry. So there is very few studies to find out flow characteristics of globe valve. In this study, numerical analysis for flow field in the globe valve is carried out using the Fluent code which is commercial CFD program. Pressure drop through the globe valve is also measured to verify the results come from numerical analysis. Comparing experiment with numerical analysis, two results are very close to each other. Also finite element method is employed to evaluate the safety of globe valve using the results coming from the flow analysis to make the boundary conditions for FEM analysis. Maximum stress appears on the inlet channel of valve where inlet flow runs against. Because the maximum stress between 11.7 MPa to 3.6 MPa is within 3.4% of yield stress. the structural safety of valve is considered to be very sound

  • PDF

Repair of Mold by Cold Spray Deposition and Mechanical Machining (저온 분사 적층과 절삭가공을 이용한 금형보수 사례연구)

  • Kang Hyuk-Jin;Jung Woo-Gyun;Chu Won-Sik;Ahn Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.101-107
    • /
    • 2006
  • Cold gas dynamic spray or cold spray is a novel manufacturing method for coatings. Cold spray is a high rate and direct material deposition process that utilizes the kinetic energy of particles sprayed at high velocity (300-1,200m/s). In this research, a technique to repair the damaged mold by cold spray deposition and mechanical machining was proposed. An aluminum 6061 mold with three-dimensional surface was fabricated, intentionally damaged and material-added by cold spray, and its original geometry was re-obtained successfully by Computer Numerical Control (CNC) machining. To investigate deformation of material caused by cold spray, deposition was conducted on thin aluminum plates ($100mm{\times}100mm{\times}3mm$). The average deformation of the plates was $205{\sim}290{\mu}m$ by Coordinate Measurement Machine (CMM). In addition, the cross section of deposited layer was analyzed by scanning electron microscopy (SEM). To compare variation of hardness, Vickers hardness was measured by micro-hardness tester.

Deformation Analysis of Miniature Metal Bellows Charged Nitrogen for Temperature Change to Cryogenic Condition (극저온까지 온도변화에 따른 질소 충전 소형 금속 벨로우즈의 변형 해석)

  • Lee, Seung-Ha;Lee, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.10
    • /
    • pp.81-88
    • /
    • 2009
  • Bellows is used to control temperature of a Joule-Thomson micro cryocooler. It is made of Nickelcobalt alloy that retains mechanical properties from cryogenic temperature to temperature of 570K. The geometry of bellows is an axisymmetric shell and Nitrogen with high pressure was charged at temperature of 293K. During cool-down process, the pressure and volume of Nitrogen are changed and must be satisfied with state equation. At cryogenic temperature, Nitrogen can exist as a part liquid and part vapor. Pressure-density-temperature behavior under this vaporliquid phase equilibrium is closely given by the Modified-Benedict-Webb-Rubin(MBWR) state equation. To evaluate deformation of bellows for temperature change, the numerical calculation of the volume within bellows and finite element analysis of bellows under internal pressure were iteratively performed until MBWR state equation is satisfied. The numerical results show that deformation of the bellows can be analyzed by the present method in a wide range of temperature including cryogenic temperature.

HSM(Hierarchical State Machine) based LOD AI for Computer GamesS (게임을 위한 계층적 상태 기계 기반의 인공지능 LOD)

  • Seo, Jinseok
    • Journal of Digital Contents Society
    • /
    • v.14 no.2
    • /
    • pp.143-149
    • /
    • 2013
  • Many researchers and developers take a greater interest on the LOD AI techniques as users demand more elaborate and sophisticated game AI in recent years. However, contrary to the traditional geometry LOD, existing LOD AI techniques can be used only to a limited extent. Therefore, in this paper, I propose an LOD AI technique, which uses HSM(Hierarchical State Machine) and the Lua script language as the method to control game objects. Using the proposed approach, we can easily produce multilevel AI models for LOD and design various objects without hard-coding state machines. Moreover, in order to show the effectiveness of the presented technique, this paper exemplifies the results of the efficiency test through the prototype engine.

Arthrokinetic Analysis of Knee Joint (슬관절의 운동학적 분석)

  • Kim, Jae-hun
    • PNF and Movement
    • /
    • v.6 no.1
    • /
    • pp.53-60
    • /
    • 2008
  • Purpose : To describes the important aspects of knee joint movement and function used when applying PNF technique to the lower limb. Method : The knee was a very important roles in the lower limb movement and ambulation. This study summarizes the physiologic movement of knee to the PNF lower extremity patterns. Result : The tibiofemoral joint is usually described as a modified hinge joint with flexion-extension and axial rotation by two degrees of freedom movement. These arthrokinematics are a result of the geometry of the joints and the tension produced in the ligamentous structures. The patellofemoral joint is a sellar joint between the patella and the femur. Stability of the patellofemoral joint is dependent on the passive and dynamic restraints around the knee. In a normal knee the ligaments are inelastic and maintain a constant length as the knee flexes and extends, helping to control rolling, gliding and translation of the joint motions. Conclusions : It is important to remember that small alterations in joint alignment can result in significant alterations in patellofemoral joint stresses and that changes in the mechanics of the patellofemoral joint can also result in changes in the tibiofemoral compartments. Successful treatment requires the physical therapist to understand and apply these arthrokinematic concepts. When applied to PNF low extremity patterns, understanding of these mechanical concepts can maximize patient function while minimizing the risk for further symptoms or injury.

  • PDF

Trivariate B-spline Approximation of Spherical Solid Objects

  • Kim, Junho;Yoon, Seung-Hyun;Lee, Yunjin
    • Journal of Information Processing Systems
    • /
    • v.10 no.1
    • /
    • pp.23-35
    • /
    • 2014
  • Recently, novel application areas in digital geometry processing, such as simulation, dynamics, and medical surgery simulations, have necessitated the representation of not only the surface data but also the interior volume data of a given 3D object. In this paper, we present an efficient framework for the shape approximations of spherical solid objects based on trivariate B-splines. To do this, we first constructed a smooth correspondence between a given object and a unit solid cube by computing their harmonic mapping. We set the unit solid cube as a rectilinear parametric domain for trivariate B-splines and utilized the mapping to approximate the given object with B-splines in a coarse-to-fine manner. Specifically, our framework provides user-controllability of shape approximations, based on the control of the boundary condition of the harmonic parameterization and the level of B-spline fitting. Experimental results showed that our method is efficient enough to compute trivariate B-splines for several models, each of whose topology is identical to a solid sphere.

A Study on Organistic Line Extension on Digital Space - Focus on NOX digital space - (디지털 공간에 나타난 선의 유기체적 확장성에 관한 연구 - NOX 디지털 공간을 중심으로 -)

  • Yu, Mi-Yeon;Yoon, Jae-Eun
    • Korean Institute of Interior Design Journal
    • /
    • v.17 no.3
    • /
    • pp.148-155
    • /
    • 2008
  • The following research focuses on the formation method of digital space by organistic line extension among various digital formation methods. The paper reflects on the meaning and concept of today's digitalism which enables the application of complex organistic system on space through advanced technology. It also explores the concept of a line in topology which differs in assumptive meaning from traditional Euclidian geometry. The findings of the research are that first, digital space is not optimized, but is a tentative formation in process. A digital space encompasses characteristics such as infinity, possibility, potential, asymmetry, and the force of virtuality such characteristics are expressed through a moving surface constantly changing with direction. Second, a digital space formed by line extension is inseparable and durable since no measurement or dimension is predetermined. Furthermore, its sense of direction and flexibility gives it a feeling of a living organism. Third, a Euclidian methodology called 'NURBS' is being developed to express such a dynamic digital space; this is reflected through three elements, control point, weights, and knots to effectively reflect the characteristics of virtuality. The opportunities of digital space are infinite, and the possibilities of formation methods likewise vast.

Constructing a Three-Dimensional Endothelial Cell Layer in a Circular PDMS Microchannel

  • Choi, Jong Seob;Piao, Yunxian;Kim, Kyung Hoon;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.274.2-274.2
    • /
    • 2013
  • We described a simple and efficient fabrication method for generating microfluidic channels with a circular-cross sectional geometry by exploiting the reflow phenomenon of a thick positive photoresist. Initial rectangular shaped positive photoresist micropatterns on a silicon wafer, which were fabricated by a conventional photolithography process, were converted into a half-circular shape by tuning the temperature to around $105^{\circ}C$. Through optimization of the reflow conditions, we could obtain a perfect circular micropattern of the positive photoresist, and control the diameter in a range from 100 to 400 ${\mu}m$. The resultant convex half-circular photoresist was used as a template for fabricating a concave polydimethylsiloxane (PDMS) through a replica molding process, and a circular PDMS microchannel was produced by bonding two half-circular PDMS layers. A variety of channel dimensions and patterns can be easily prepared, including straight, S-curve, X-, Y-, and T-shapes to mimic an in vivo vascular network. To inform an endothelial cell layer, we cultured primary human umbilical vein endothelial cells (HUVECs) inside circular PDMS microchannels, and demonstrated successful cell adhesion, proliferation, and alignment along the channel.

  • PDF