• Title/Summary/Keyword: geometry control

Search Result 767, Processing Time 0.024 seconds

A 3-Dimentional Radiation Diffraction Problem Analysis by B-Spline Higher-Order Panel Method

  • Kim Gun-Do;Lee Chang-Sup
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.1
    • /
    • pp.10-26
    • /
    • 2006
  • The radiation problem for oscillating bodies on the free surface has been formulated by the over-determined Green integral equation, where the boundary condition on the free surface is satisfied by adopting the Kelvin-type Green function and the irregular frequencies are removed by placing additional control points on the free surface surrounded by the body. The B-Spline based higher order panel method is then applied to solve the problem numerically. Because both the body geometry and the potential on the body surface are represented by the B-Splines, that is in polynomials of space parameters, the unknown potential can be determined accurately to the order desired above the constant value. In addition, the potential expressed in B-Spline can be differentiated analytically to get the velocity on the surface without introducing any numerical error. Sample computations are performed for a semispherical body and a rectangular box floating on the free surface for six-degrees of freedom motions. The added mass and damping coefficients are compared with those by the already-validated constant panel method of the same formulation showing strikingly good agreements.

Calculation of The Core Damage & FP Release Behavior for The PHEBUS FPT0 Similar to Cold Leg Break Accident Using MELCOR

  • Park, Jong-Hwa;Cho, Song-Won;Kim, Hee-Dong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.637-642
    • /
    • 1996
  • This paper presents the analysis results for the core degradation processes and the fission product release of the PHEBUS FPT0 experiment using MELCOR1.8.3. The objective of this study is to assess models associated with the core damage and fission product behavior in MELCOR. The calculation results were much improved through sensitivity studies. Thermal/hydraulic behavior in the core and the circuit was well predicted under the intact core geometry. In non-eutectic model case. the UO$_2$ dissolution model in the MELCOR always showed such a tendency that the resulting dissolved UO$_2$ mass was small at the highly oxidized condition due to the model logic. Total H$_2$ generation mass was underpredicted because the stiffner was not modeled and the liner in the shroud was not allowed to be oxidized in MELCOR. Some difficulties were found in modeling the activation product were solved by manipulating the RN input associated with the initial fission product inventory. These problem were occurred because there are no control rod model in MELCOR. Generally the fission product release ratio showed a similar trend compared with the measured data except the activation product. which have no model to simulate in MELCOR.

  • PDF

PIV Investigation on the Skin Friction Reduction Mechanism of Outer-layer Vertical Blades (경계층 외부 수직날의 마찰저항 저감 기구에 대한 PIV 관측)

  • Park, Hyun;An, Nam-Hyun;Park, Seong-Hyoen;Chun, Ho-Hwan;Lee, In-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.1
    • /
    • pp.20-28
    • /
    • 2011
  • An experimental assessment has been made of the drag reducing efficiency of the outer-layer vertical blades, which were first devised by Hutchins. The drag reduction efficiency of the blades was reported to reach as much as 30%. However, the drag reduction efficiency was quantified only in terms of the reduction in the local skin-friction coefficient. In the present study, a series of drag force measurements in towing tank has been performed toward the assessments of the total drag reduction efficiency of the outer-layer vertical blades. A maximum 9.6% of reduction of total drag was achieved. The scale of blade geometry is found to be weakly correlated with outer variable of boundary layer. In addition, detailed flow field measurements have been performed using 2-D time resolved PIV with a view to enabling the identification of drag reduction mechanism.

A Compact CPW-fed Antenna for 2.4 GHz WLAN applications (2.4 GHz 무선랜 대역용 CPW 소형 안테나)

  • Choi, In-Tae;Shin, Ho-Sub
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.11
    • /
    • pp.1245-1250
    • /
    • 2015
  • In this paper, a compact CPW-fed antenna for 2.45 GHz band WLAN applications is presented. The proposed antenna which has a geometry of folded stub and slot is fabricated into an inexpensive FR-4 substrate that has a dielectric constant of 4.2 and a thickness of 1.0 mm with optimized parameters obtained by simulation, and then measured. From measured result, we confirmed available operation as antenna for WLAN applications by obtaining the return loss level of < -10 dB in the frequency band of 2.4-2.484 GHz.

High Resolution Hydroacoustic Investigation in Shallow Water for the Engineering Design of Railroad Bridge (철도교량 설계 지반조사를 위한 고분해능 수면 탄성파반사법의 응용 사례)

  • ;Swoboda Ulrich
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.231-238
    • /
    • 2001
  • To investigate the underground structure of shallow water, Han-river near Yangsou-Ri, high resolution hydroacoustic measurements were carried out for the engineering design of railroad bridge. The acoustic source was a Boomer with an energy of 90 to 280J and in a frequency range up to about 16KHz. The reflected signals were received by using both traditional hydrophones(passive element) and a specially devised receiver unit(active element) mainly composed of piezofilms and preamplifier. They are connected to the "SUMMIT" data acquisition system(DMT-GeoTec company), where the sampling interval was set to 1/32㎳. The source position was continuously monitored by a precision DGPS system whose positioning accuracy was on the order of loom. For the quality control purposes, two different source-receiver geometries were taken. That is to say, the measurements were repeated along the profile everytime depending on the different source energy(175J, 280J), the receiving elements(passive, active) and two different source-receiver geometries. It was shown that the data resolution derived from a proper arrangement with the active hydrophone could be greatly enhanced and hence the corresponding profile section caused by the regular data processing system "FOCUS" accounted excellently for the underground formation below the shallow water.w the shallow water.

  • PDF

Nonlinear vibration analysis of MSGT boron-nitride micro ribbon based mass sensor using DQEM

  • Mohammadimehr, M.;Monajemi, Ahmad A.
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.1029-1062
    • /
    • 2016
  • In this research, the nonlinear free vibration analysis of boron-nitride micro ribbon (BNMR) on the Pasternak elastic foundation under electrical, mechanical and thermal loadings using modified strain gradient theory (MSGT) is studied. Employing the von $K{\acute{a}}rm{\acute{a}}n$ nonlinear geometry theory, the nonlinear equations of motion for the graphene micro ribbon (GMR) using Euler-Bernoulli beam model with considering attached mass and size effects based on Hamilton's principle is obtained. These equations are converted into the nonlinear ordinary differential equations by elimination of the time variable using Kantorovich time-averaging method. To determine nonlinear frequency of GMR under various boundary conditions, and considering mass effect, differential quadrature element method (DQEM) is used. Based on modified strain MSGT, the results of the current model are compared with the obtained results by classical and modified couple stress theories (CT and MCST). Furthermore, the effect of various parameters such as material length scale parameter, attached mass, temperature change, piezoelectric coefficient, two parameters of elastic foundations on the natural frequencies of BNMR is investigated. The results show that for all boundary conditions, by increasing the mass intensity in a fixed position, the linear and nonlinear natural frequency of the GMR reduces. In addition, with increasing of material length scale parameter, the frequency ratio decreases. This results can be used to design and control nano/micro devices and nano electronics to avoid resonance phenomenon.

Evolutionary Shape Optimization of Flexbeam Sections of a Bearingless Helicopter Rotor

  • Dhadwal, Manoj Kumar;Jung, Sung Nam;Kim, Tae Joo
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.207-212
    • /
    • 2014
  • The shape optimization of composite flexbeam sections of a bearingless helicopter rotor is studied using a finite element (FE) sectional analysis integrated with an efficient evolutionary optimization algorithm called particle swarm assisted genetic algorithm (PSGA). The sectional optimization framework is developed by automating the processes for geometry and mesh generation, and the sectional analysis to compute the elastic and inertial properties. Several section shapes are explored, modeled using quadratic B-splines with control points as design variables, through a multiobjective design optimization aiming minimum torsional stiffness, lag bending stiffness, and sectional mass while maximizing the critical strength ratio. The constraints are imposed on the mass, stiffnesses, and critical strength ratio corresponding to multiple design load cases. The optimal results reveal a simpler and better feasible section with double-H shape compared to the triple-H shape of the baseline where reductions of 9.46%, 67.44% and 30% each are reported in torsional stiffness, lag bending stiffness, and sectional mass, respectively, with critical strength ratio greater than 1.5.

A Study on Prediction for Top Bead Width using Radial Basis Function Network (방사형기저함수망을 이용한 표면 비드폭 예측에 관한 연구)

  • 손준식;김인주;김일수;김학형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.170-174
    • /
    • 2004
  • Despite the widespread use in the various manufacturing industries, the full automation of the robotic CO$_2$ welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this paper, an attempt has been made to develop an Radial basis function network model to predict the weld top-bead width as a function of key process parameters in the robotic CO$_2$ welding. and to compare the developed model and a simple neural network model using two different training algorithms in order to verify performance. of the developed model.

  • PDF

Experimental Study on Process Design of Rubber Pad Bending (고무 패드 벤딩 공정설계에 관한 실험적 연구)

  • Kwon, Hyuck-Cheol;Im, Yong-Taek;Ji, Dong-Cheol;Rhee, Meung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.407-412
    • /
    • 2000
  • In this study, a research for process design in bending of structural frame of AA6061-T6 with rubber pad was conducted. In this process, the conventional lower die made of metal is replaced with a polyurethane pad, resulting in high flexibility during bending. Vulcanized polyurethane rubber with shore A hardness of 60 was used for the pad. Experiments on a newly developed bending machine were carried out by controlling the stroke of the roller and horizontal movement of roller pad lower die. From this, the relation between roller path and geometry of the materials bent was obtained for the process design of producing roof rail part of a passenger car and the experimental result was compared with the target profile. For more accurate process design, it is required to control the roller path interactively. Based on the experience in developing the prototype bending machine, it is construed that a fully automated bending system with rubber pad to produce various light-weight components for automotive body frames can be successfully developed.

  • PDF

Hydraulic Modal Analysis of High-Pressure Common-rail Fuel Injection System for Passenger Vehicle (승용 CR 연료분사시스템에 대한 유압 Modal 분석)

  • Sung, Gisu;Kim, Sangmyeong;Kim, Jinsu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.14-19
    • /
    • 2015
  • Recently, R&D demand for environmental friendly vehicle has rapidly increased due to its global environmental issues such as global warming, energy and economic crisis. Under this situation, the most realistic alternative way for environmental friendly vehicle is a clean diesel vehicle. The common-rail fuel injection system, as key technology of clean diesel vehicle, consists of a high pressure pump, common-rail, high pressure fuel line and electronic control injector. In common-rail high-pressure fuel injection system, high pressure wave of injection system and geometry of injector elements have a major effects on high-pressure fuel spray. Therefore, in this study, the numerical model was developed for analysis about the common-rail fuel pressure pulsation by using AMESim code. We could secure stability of common-rail high-pressure fuel injection system through optimal design of fuel line.