• Title/Summary/Keyword: geometry control

Search Result 766, Processing Time 0.035 seconds

Study on the Nonlinear Characteristic Effects of Dielectric on Warpage of Flip Chip BGA Substrate

  • Cho, Seunghyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.33-38
    • /
    • 2013
  • In this study, both a finite element analysis and an experimental analysis are executed to investigate the mechanical characteristics of dielectric material effects on warpage. Also, viscoelastic material properties are measured by DMA and are considered in warpage simulation. A finite element analysis is done by using both thermal elastic analysis and a thermo-viscoelastic analysis to predict the nonlinear effects. For experimental study, specimens warpage of non-symmetric structure with body size of $22.5{\times}22.5$ mm, $37.5{\times}37.5$ mm and $42.5{\times}42.5$ mm are measured under the reflow temperature condition. From the analysis results, experimental warpage is not similar to FEA results using thermal elastic analysis but similar to FEA results using thermo-viscoelastic analysis. Also, its effect on substrate warpage is increased as core thickness is decreased and body size is getting larger. These FEA and the experimental results show that the nonlinear characteristics of dielectric material play an important role on substrate warpage. Therefore, it is strongly recommended that non-linear behavior characteristics of a dielectric material should be considered to control warpage of FCBGA substrate under conditions of geometry, structure and manufacturing process and so on.

A design of The Embedded 3n Graphics Rendering Processor for Portable Devices (휴대형기기에 적합한 내장형 3차원 그래픽 렌더링 처리기 설계)

  • 우현재;장태홍;이문기
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.11
    • /
    • pp.105-113
    • /
    • 2004
  • This paper proposes 3D graphics accelerator, especially rendering unit, for portable devices. The existing 3D architecture is not suitable for portable devices because of its huge size. To reduce the size, we use iterative architecture and fixed-point calculation. In this paper, we suggest the format of fixed-point comparing with the result images, and some special technique to control. Finally, it is implemented with FPGA and 0.25um ASIC technology respectively. The ASIC chip can execute 47.88M pixels per second. The size of ASIC chip is 4.9287mm*4.9847mm and the power consumption is 263.7mW with 50MHz operation frequency.

Optimization Of CMP for $SiO_2$ Thin Film with a Control of Temperature in Pad Conditioning Process (패드 컨디셔닝시 온도조절을 통한 산화막 CMP 최적화)

  • Choi, Gwon-Woo;Park, Sung-Woo;Kim, Nam-Hoon;Chang, Eui-Goo;Seo, Yong-Jin;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.731-734
    • /
    • 2004
  • As the integrated circuit device shrinks to the smaller dimension, the chemical mechanical polishing (CMP) process was required for the global planarization of inter-metal dielectric(IMD) layer with free-defect. Polishing pads play a key role in CMP, which has been recognized as a critical step to improve the topography of wafers for semiconductor fabrication. It is investigated the performance of $SiO_2-CMP$ process using commercial silica slurry as a pad conditioning temperature increased after CMP process. This study also showed the change of SEM images in the pore geometry on the CMP pad surface after use with a different pad conditioning temperature.

  • PDF

Experimental Study on Lateral Prestressed Concrete of Spliced Girder using Flexural member Connector (휨연결재를 이용한 횡방향 프리스트레스를 도입한 분절거더의 실험적 성능평가)

  • Kim, Tae-Gyun;Park, Jeong-Cheon;Kim, Jae-Heung;Kim, Sung-Bae;Kim, Jang-Ho Jay
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.13-14
    • /
    • 2010
  • The main purpose of this study is to investigate the static behavior of spliced prestressed concrete girder with bending moment connector and lateral prestressing. Same geometry and materials are used to fabricate these spliced and monolithic girders. A monolithic and spliced specimens materials and dimensions are same. The specimens are comprised of one spliced girder without lateral bending concrete as a control specimen and three spliced girders with lateral bending connectors. Deflections at the middle of girders have been measured for evaluation. Also, strains of the concrete at the middle of span and connection points have been measured.

  • PDF

NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO (3차원 공동의 폭변화에 따른 초음속 유동에 대한 수치분석연구)

  • Woo, C.H.;Kim, J.S.;Choi, H.I.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.181-184
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation and reattachment, shock and expansion waves. The general cavity flow phenomena include the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity' flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions, The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio(L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyized and compared with the results of Rossiter's Eq.

  • PDF

NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO (공동의 폭 변화에 따른 3차원 초음속 공동 유동연구)

  • Woo, C.H.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.62-66
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation, reattachment, shock waves and expansion waves. The general cavity flow phenomena includes the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions. The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio (L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyzed and compared with the results of Rossiter's Eq.

Analysis on the In-cylinder Flow of HIMSEN 6H21/32 Engine (HIMSEN 6H21/32 엔진 실린더 내 유동해석)

  • Yoon, Wook-Hyun;Kim, Jin-Won;Ha, Ji-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.934-939
    • /
    • 2001
  • In computational study of the flow in piston engines and the flow through moving valves, the use of moving vertices is essential for modelling flows with moving boundaries. The positions of cell vertices in such cases must be allowed to vary with time. To simulate 3-dimensional port-valve and piston-cylinder of HIMSEN 6H21/32 engine, a commercially available code, STAR-CD, was used. Changes in mesh geometry was specified by PROSTAR commands.(i.e. the Change Grid operation in the EVENTS command module.) Control of the intake flow is expected to play an important role as designers seek to obtain better fuel spray characteristics, fuel mixing and mixture preparation, combustion performance, and emissions reductions to meet national standards. As a result of analysis, velocity fields indicate the presence of a structured flow comprised of one pair of counter-rotating vortices under the intake valve during the early induction process. These flow structures remain visible for most of the intake process. As the piston moves towards BDC, these vortices develops into a larger tumbling motion that dominates the flow structure.

  • PDF

Dynamic Analysis of Air Operated Globe Valve (공기구동형 글로브밸브의 동적거동해석)

  • 양상민;박종학;김동진;허태영;김봉호;신성기;김찬용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1022-1025
    • /
    • 2003
  • Although the globe is the most typical valve to control high pressure drop in piping system, it is very hard to figure out the characteristics of flow field in the globe valve caused by its complex geometry. So there is very few studies to find out flow characteristics of globe valve. In this study, numerical analysis for flow field in the globe valve is carried out using the Fluent code which is commercial CFD program. Pressure drop through the globe valve is also measured to verify the results come from numerical analysis. Comparing experiment with numerical analysis, two results are very close to each other. Also finite element method is employed to evaluate the safety of globe valve using the results coming from the flow analysis to make the boundary conditions for FEM analysis. Maximum stress appears on the inlet channel of valve where inlet flow runs against. Because the maximum stress between 11.7 MPa to 3.6 MPa is within 3.4% of yield stress. the structural safety of valve is considered to be very sound

  • PDF

A Study of the Application of Neural Network for the Prediction of Top-bead Height (표면 비드높이 예측을 위한 최적의 신경회로망의 적용에 관한 연구)

  • Son, J.S.;Kim, I.S.;Park, C.E.;Kim, I.J.;Kim, H.H.;Seo, J.H.;Shim, J.Y.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.87-92
    • /
    • 2007
  • The full automation welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this paper, an attempt has been made to develop an neural network model to predict the weld top-bead height as a function of key process parameters in the welding. and to compare the developed models using three different training algorithms in order to select an adequate neural network model for prediction of top-bead height.

Rapid Prototyping of Polymer Microfluidic Devices Using CAD/CAM Tools for Laser Micromachining

  • Iovenitti, Pio G.;Mutapcic, Emir;Hume, Richard;Hayes, Jason P.
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.183-192
    • /
    • 2006
  • A CAD/CAM system has been developed for rapid prototyping (RP) of microfluidic devices based on excimer laser micromachining. The system comprises of two complementary softwares. One, the CAM tool, creates part programs from CAD models. The other, the Simulator Tool, uses a part program to generate the laser tool path and the 2D and 3D graphical representation of the machined microstructure. The CAM tool's algorithms use the 3D geometry of a microstructure, defined as an STL file exported from a CAD system, and process parameters (laser fluence, pulse repetition frequency, number of shots per area, wall angle), to automatically generate Numerical Control (NC) part programs for the machine controller. The performance of the system has been verified and demonstrated by machining a particle transportation device. The CAM tool simplifies part programming and replaces the tedious trial-and-error approach to creating programs. The simulator tool accepts manual or computer generated part programs, and displays the tool path and the machined structure. This enables error checking and editing of the program before machining, and development of programs for complex microstructures. Combined, the tools provide a user-friendly CAD/CAM system environment for rapid prototyping of microfluidic devices.