• 제목/요약/키워드: geometrically nonlinear structural analysis

검색결과 92건 처리시간 0.027초

p-Version 비선형 해석에 의한 팻취보강된 RC구조물의 극한강도 산정 (Ultimate Load of RC Structures Bonded with the Soffit Plate by p-Version Nonlinear Analysis)

  • 안재석;박진환;홍종현;우광성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.365-372
    • /
    • 2004
  • A new finite element model will be presented to analyze the nonlinear behavior of not only RC beams and slabs, but also RC beams strengthened by a patch repair. The numerical approach is based on the p-version degenerate shell element including theory of anisotropic laminated composites, theory of materially and geometrically nonlinear plates. In the nonlinear formulation of this model, the total Lagrangian formulation is adopted with large deflections and moderate rotations being accounted for in the sense of von Karman hypothesis. The material model is based on hardening rule, crushing condition, plate-end debonding strength model and so on. The Gauss-Lobatto numerical quadrature is applied to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed p-version finite element model is demonstrated through several numerical examples for the load-deflection curves, the ultimate loads, and the failure modes of reinforced connote slabs and RC beams bonded with steel plates or FRP plates compared with available experimental and numerical results.

  • PDF

Development of triangular flat-shell element using a new thin-thick plate bending element based on semiLoof constrains

  • Chen, Yong-Liang;Cen, Song;Yao, Zhen-Han;Long, Yu-Qiu;Long, Zhi-Fei
    • Structural Engineering and Mechanics
    • /
    • 제15권1호
    • /
    • pp.83-114
    • /
    • 2003
  • A new simple 3-node triangular flat-shell element with standard nodal DOF (6 DOF per node) is proposed for the linear and geometrically nonlinear analysis of very thin to thick plate and shell structures. The formulation of element GT9 (Long and Xu 1994), a generalized conforming membrane element with rigid rotational freedoms, is employed as the membrane component of the new shell element. Both one-point reduced integration scheme and a corresponding stabilization matrix are adopted for avoiding membrane locking and hourglass phenomenon. The bending component of the new element comes from a new generalized conforming Kirchhoff-Mindlin plate element TSL-T9, which is derived in this paper based on semiLoof constrains and rational shear interpolation. Thus the convergence can be guaranteed and no shear locking will happen. Furthermore, a simple hybrid procedure is suggested to improve the stress solutions, and the Updated Lagrangian formulae are also established for the geometrically nonlinear problems. Numerical results with solutions, which are solved by some other recent element models and the models in the commercial finite element software ABAQUS, are presented. They show that the proposed element, denoted as GMST18, exhibits excellent and better performance for the analysis of thin-think plates and shells in both linear and geometrically nonlinear problems.

Toward a More Complete Analysis for Fluid-Structure Interaction in Helicopters

  • Kim, Kyung-Hwan;Shin, Sang-Joon;Lee, Jae-Won;Yee, Kwan-Jung;Oh, Se-Jong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권2호
    • /
    • pp.110-120
    • /
    • 2006
  • There have been developed many structural and fluid rotorcraft analysis models in rotorcraft community, and also lots of investigations have been conducted to combine these two models. These investigations turn out to be good at predicting the airloads precisely, but they have not taken the blade nonlinear deflection into account. For this reason, the present paper adopts a sophisticated structural model which can describe three-dimensional nonlinear deflection of the blade. And it is combined with two types of aerodynamic model. First one is generalized Greenberg type of finite-time aerodynamic model, which is originally established for a fixed wing, but later modified to be suitable for coupled flap-lag-torsional aeroelastic analysis of the rotor blade. Second aerodynamic model is based on the unsteady source-doublet panel method coupled with a free wake model. The advantages of the present method are capabilities to consider thickness of the blade and more precise wake effects. Transient responses of the airloads and structural deflections in time domain are mainly analyzed in this paper.

페트로프-갤러킨 자연요소법에 의한 기하하적 비선형 해석 (Geometrically Nonlinear Analysis using Petrov-Galerkin Natural Element Method Natural Element Method)

  • 이홍우;조진래
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.333-340
    • /
    • 2004
  • This paper deals with geometric nonlinear analyses using a new meshfree technique which improves the numerical integration accuracy. The new method called the Petrov-Galerkin natural element method (PGNEM) is based on the Voronoi diagram and the Delaunay triangulation which is based on the same concept used for conventional natural element method called the Bubnov-Galerkin natural element method (BGNEM). But, unlike BGNEM, the test shape function is differently chosen from the trial shape function. In the linear static analysis, it is ensured that the numerical integration error of the PGNEM is remarkably reduced. In this paper, the PGNEM is applied to large deformation problems, and the accuracy of the proposed numerical technique is verified through the several examples.

  • PDF

Geometrically nonlinear elastic analysis of space trusses

  • Tin-Loi, F.;Xia, S.H.
    • Structural Engineering and Mechanics
    • /
    • 제7권4호
    • /
    • pp.345-360
    • /
    • 1999
  • A general framework for the nonlinear geometric analysis of elastic space trusses is presented. Both total Lagrangian and finite incremental formulations are derived from the three key ingredients of statics, kinematics and constitutive law. Particular features of the general methodology include the preservation of static-kinematic duality through the concept of fictitious forces and deformations, and an exact description for arbitrarily large displacements, albeit small strain, that can be specialized to any order of geometrical nonlinearity. As for the numerical algorithm, we consider specifically the finite incremental case and suggest the use of a conventional, simple and flexible arc-length based method. Numerical examples are presented to illustrate and validate the accuracy of the approach.

Comparison of alternative algorithms for buckling analysis of slender steel structures

  • Dimopoulos, C.A.;Gantes, C.J.
    • Structural Engineering and Mechanics
    • /
    • 제44권2호
    • /
    • pp.219-238
    • /
    • 2012
  • Objective of this paper is to compare linear buckling analysis formulations, available in commercial finite element programs. Modern steel design codes, including Eurocode 3, make abundant use of linear buckling loads for calculation of slenderness, and of linear buckling modes, used as shapes of imperfections for nonlinear analyses. Experience has shown that the buckling mode shapes and the magnitude of buckling loads may differ, sometimes significantly, from one algorithm to another. Thus, three characteristic examples have been used in order to assess the linear buckling formulations available in the finite element programs ADINA and ABAQUS. Useful conclusions are drawn for selecting the appropriate algorithm and the proper reference load in order to obtain either the classical linear buckling load or a good approximation of the actual geometrically nonlinear buckling load.

Nonlinear first ply failure analysis of composite skewed hypar shells using FEM

  • Ghosh, Arghya;Chakravorty, Dipankar
    • Structural Engineering and Mechanics
    • /
    • 제68권1호
    • /
    • pp.81-94
    • /
    • 2018
  • This paper uses the finite element method (FEM) considering geometrically nonlinear strains to study the first ply failure of laminated composite skewed hypar shell roofs through well-established failure criteria along with the serviceability criterion of deflection. Apart from validating the approach through solution of benchmark problems, skewed hypars with different practical parametric variations are studied for failure loads and tendencies. First ply failure zones are also identified to suggest design and non-destructive monitoring guidelines to the practising engineers. Recommendation tables regarding the design approaches to be adopted in specific cases and factor of safety values needed to be imposed on first ply failure load values for varying shell curvatures are also suggested in this paper. Providing practical inputs to design engineers is the main achievement of the present study.

Large amplitude free vibration analysis of functionally graded nano/micro beams on nonlinear elastic foundation

  • Setoodeh, AliReza;Rezaei, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제61권2호
    • /
    • pp.209-220
    • /
    • 2017
  • The purpose of this paper is to study the geometrically nonlinear free vibration of functionally graded nano/micro beams (FGNBs) based on the modified couple stress theory. For practical applications, some analytical expressions of nonlinear frequencies for FGNBs on a nonlinear Pasternak foundation are developed. Hamilton's principle is employed to obtain nonlinear governing differential equations in the context of both Euler-Bernoulli and Timoshenko beam theories for a comprehensive investigation. The modified continuum theory contains one material length scale parameter to capture the size effect. The variation of two-constituent material along the thickness is modeled using Reddy's power-law. Also, the Mori-Tanaka method as an accurate homogenization technique is implemented to estimate the effective material properties of the FGNBs. The results are presented for both hinged-hinged and clamped-clamped boundary conditions. The nonlinear partial differential equations are reduced to ordinary differential equations using Galerkin method and then the powerful method of homotopy analysis is utilized to obtain the semi-analytical solutions. Eventually, the presented analytical expressions are used to examine the influences of the length scale parameter, material gradient index, and elastic foundation on the nonlinear free vibration of FGNBs.

Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading

  • Akbas, Seref Doguscan;Kocaturk, Turgut
    • Structural Engineering and Mechanics
    • /
    • 제44권1호
    • /
    • pp.109-125
    • /
    • 2012
  • Post-buckling behavior of Timoshenko beams subjected to uniform temperature rising with temperature dependent physical properties are studied in this paper by using the total Lagrangian Timoshenko beam element approximation. The beam is clamped at both ends. In the case of beams with immovable ends, temperature rise causes compressible forces end therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. Also, the material properties (Young's modulus, coefficient of thermal expansion, yield stress) are temperature dependent: That is the coefficients of the governing equations are not constant in this study. This situation suggests the physical nonlinearity of the problem. Hence, the considered problem is both geometrically and physically nonlinear. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The beams considered in numerical examples are made of Austenitic Stainless Steel (316). The convergence studies are made. In this study, the difference between temperature dependent and independent physical properties are investigated in detail in post-buckling case. The relationships between deflections, thermal post-buckling configuration, critical buckling temperature, maximum stresses of the beams and temperature rising are illustrated in detail in post-buckling case.

가정변형도 쉘요소를 이용한 보강된 쉘구조의 기하학적 비선형해석 (Geometrically Nonlinear Analysis of Stiffened Shell Structures Using the Assumed Strain Shell Element)

  • 최명수;김문영;장승필
    • 한국전산구조공학회논문집
    • /
    • 제13권2호
    • /
    • pp.209-220
    • /
    • 2000
  • 보강된 판 및 쉘구조의 기하학적 비선형해석을 수행하기 위하여, total lagrangian formulation에 근거한 증분 평형방정식을 적용하고, 강도행렬 산정시 회전각의 2차항을 포함시켜 기하학적 비선형 해석시 해의 수렴성을 향상시켰으며, 보강된 쉘 구조의 해석시 보강재를 쉘 요소로 모델링하고 주부재와 보강재의 연결점에서 일반적인 변환관계를 이용하였다. 등매개 쉘 유한요소의 단점인 locking 현상을 극복하기 위하여 가정 변형률장을 적용하여 감차적분 또는 선택적분시 나타날 수 있는 제로 에너지 모드를 제거하였다. 수치해석 예제를 통하여 가정 변형률장에 근거한 쉘유한요소에 대한 효율성 및 적용성을 확인하였다.

  • PDF