• 제목/요약/키워드: geometrically nonlinear structural analysis

검색결과 92건 처리시간 0.028초

Geometrically nonlinear analysis of plane frames composed of flexibly connected members

  • Gorgun, H.
    • Structural Engineering and Mechanics
    • /
    • 제45권3호
    • /
    • pp.277-309
    • /
    • 2013
  • Beam-to-column connections behaviour plays an important role in the analysis and design of steel and precast concrete structures. The paper presents a computer-based method for geometrically nonlinear frames with semi-rigid beam-to-column connections. The analytical procedure employs modified stability functions to model the effect of axial force on the stiffness of members. The member modified stiffness matrix, and the modified fixed end forces for various loads were found. The linear and nonlinear analyses were applied for two planar steel structures. The method is readily implemented on a computer using matrix structural analysis techniques and is applicable for the efficient nonlinear analysis of frameworks.

Application of artificial neural networks to the response prediction of geometrically nonlinear truss structures

  • Cheng, Jin;Cai, C.S.;Xiao, Ru-Cheng
    • Structural Engineering and Mechanics
    • /
    • 제26권3호
    • /
    • pp.251-262
    • /
    • 2007
  • This paper examines the application of artificial neural networks (ANN) to the response prediction of geometrically nonlinear truss structures. Two types of analysis (deterministic and probabilistic analyses) are considered. A three-layer feed-forward backpropagation network with three input nodes, five hidden layer nodes and two output nodes is firstly developed for the deterministic response analysis. Then a back propagation training algorithm with Bayesian regularization is used to train the network. The trained network is then successfully combined with a direct Monte Carlo Simulation (MCS) to perform a probabilistic response analysis of geometrically nonlinear truss structures. Finally, the proposed ANN is applied to predict the response of a geometrically nonlinear truss structure. It is found that the proposed ANN is very efficient and reasonable in predicting the response of geometrically nonlinear truss structures.

전산구조해석을 위한 기하학적 비선형 유한요소해석 예제 개발 (Development of Geometrically Nonlinear Finite Element Analysis Examples for Computational Structural Analysis)

  • 나원배;이선민
    • 수산해양교육연구
    • /
    • 제24권5호
    • /
    • pp.699-711
    • /
    • 2012
  • An undergraduate course named computational structural analysis becomes more significant in recent years because of its important role in industries and the recent innovation in computer technology. Typically, the course consists of introduction to finite element method, utilization of general purpose finite element software, and examples focusing on static and linear analyses on various structural members such as a beam, truss, frame, arch, and cable. However, in addition to the static and linear analyses, current industries ask graduates to acquire basic knowledge on structural dynamics and nonlinear analysis, which are not listed in the conventional syllabus of the computational structural analysis. Therefore, this study develops geometrically nonlinear examples, which can help students to easily capture the fundamental nonlinear theory, software manipulation, and problem solving skills. For the purpose, five different examples are found, developed for the analyses of cables and cable nets, which naturally have strong geometrical non-linearity. In the paper, these examples are presented, discussed, and finally compared for a better subject development.

대변위 및 대회전을 고려한 만곡된 쉘의 기하학적 비선형 해석 (A geometrically nonlinear analysis of the curved shell considering large displacements and large rotation increments)

  • 이재욱;양영태
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.33-39
    • /
    • 1991
  • This Paper presents a geometrically nonlinear behaviors of shell problems by using the three-dimensional curved shell element, which includs large displacements and large rotations. The standard formulation of the geometrically nonlinearity is restricted to the assumption of infinitesmal rotation increments. This standard formulation for the displacement function is numerically improved by considering the second order expansions of Tayler series. The nonlinear behaviors of the single and double curved shells are compared wi th the other results.

  • PDF

변분법을 이용한 기하학적 비선형 구조의 설계민감도 해석 (Variational Approach for the Design Sensitivity Analysis of Geometrically Nonlinear Structures)

  • 류연선
    • 대한토목학회논문집
    • /
    • 제10권2호
    • /
    • pp.1-9
    • /
    • 1990
  • 기하학적 비선형구조의 설계민감도 해석을 위해 기준체적과 수반구조개념을 이용한 변분법이 응용되었다. 일반적인 설계민감도식을 사용하였고 이상화된 구조모형에는 비선형 유한요소과정을 이용하였다. 수치예를 통하여 기하학적 비선형 구조거동에 대한 설계민감도 해석에서 변분법의 유용성과 효용성을 확인하였다.

  • PDF

기하학적 비선헝 구조물의 설계 민감도해석 및 위상최적설계 (Design Sensitivity Analysis and Topology Optimization of Geometrically Nonlinear Structures)

  • Cho, Seonho;Jung, Hyunseung;Yang, Youngsoon
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.335-342
    • /
    • 2002
  • A continuum-based design sensitivity analysis (DSA) method fur non-shape problems is developed for geometrically nonlinear elastic structures. The non-shape problem is characterized by the design variables that are not associated with the domain of system like sizing, material property, loading, and so on. Total Lagrangian formulation with the Green-Lagrange strain and the second Piola-Kirchhoff stress is employed to describe the geometrically nonlinear structures. The spatial domain is discretized using the 4-node isoparametric plane stress/strain elements. The resulting nonlinear system is solved using the Newton-Raphson iterative method. To take advantage of the derived analytical sensitivity In topology optimization, a fast and efficient design sensitivity analysis method, adjoint variable method, is employed and the material property of each element is selected as non-shape design variable. Combining the design sensitivity analysis method and a gradient-based design optimization algorithm, an automated design optimization method is developed. The comparison of the analytical sensitivity with the finite difference results shows excellent agreement. Also application to the topology design optimization problem suggests a very good insight for the layout design.

  • PDF

Nonlinear analysis of thin shallow arches subject to snap-through using truss models

  • Xenidis, H.;Morfidis, K.;Papadopoulos, P.G.
    • Structural Engineering and Mechanics
    • /
    • 제45권4호
    • /
    • pp.521-542
    • /
    • 2013
  • In this study a truss model is used for the geometrically nonlinear static and dynamic analysis of a thin shallow arch subject to snap-through. Thanks to the very simple geometry of a truss, the equilibrium conditions can be easily written and the global stiffness matrix can be easily updated with respect to the deformed structure, within each step of the analysis. A very coarse discretization is applied; so, in a very simple way, the high frequency modes are suppressed from the beginning and there is no need to develop a complicated reduced-order technique. Two short computer programs have been developed for the geometrically nonlinear static analysis by displacement control of a plane truss model of a structure as well as for its dynamic analysis by the step-by-step time integration algorithm of trapezoidal rule, combined with a predictor-corrector technique. These two short, fully documented computer programs are applied on the geometrically nonlinear static and dynamic analysis of a specific thin shallow arch subject to snap-through.

현수교의 기하학적 비선형해석 (Geometrically Nonlinear Analysis of Suspension Bridges)

  • 방명석
    • 전산구조공학
    • /
    • 제7권3호
    • /
    • pp.177-183
    • /
    • 1994
  • 현수교의 기하학적 비선형거동을 해석할 수 있는 해석방법을 개발하고 해석을 실시하였다. 해석은 사하중하에서의 초기형상해석과 활하중하에서의 비선형해석의 2단계로 해석하는 알고리즘을 개발하였다. 선형해석 결과와 비선형해석결과를 비교할 때 기하학적인 비선형 효고가 매우 크므로 해석 및 설계시에 반드시 고려해야 함을 알 수 있다. 해석치와 측정치를 비교분석한 결과 새로운 알고리즘이 매우 유용함을 보여주고 있다.

  • PDF

Geometrically nonlinear analysis of a laminated composite beam

  • Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • 제66권1호
    • /
    • pp.27-36
    • /
    • 2018
  • The objective of this work is to analyze geometrically nonlinear static analysis a simply supported laminated composite beam subjected to a non-follower transversal point load at the midpoint of the beam. In the nonlinear model of the laminated beam, total Lagrangian finite element model of is used in conjunction with the Timoshenko beam theory. The considered non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. In the numerical results, the effects of the fiber orientation angles and the stacking sequence of laminates on the nonlinear deflections and stresses of the composite laminated beam are examined and discussed. Convergence study is performed. Also, the difference between the geometrically linear and nonlinear analysis of laminated beam is investigated in detail.

Multiobjective size and topolgy optimization of dome structures

  • Tugrul, Talaslioglu
    • Structural Engineering and Mechanics
    • /
    • 제43권6호
    • /
    • pp.795-821
    • /
    • 2012
  • The size and topology of geometrically nonlinear dome structures are optimized thereby minimizing both its entire weight & joint (node) displacements and maximizing load-carrying capacity. Design constraints are implemented from provisions of American Petroleum Institute specification (API RP2A-LRFD). In accordance with the proposed design constraints, the member responses computed by use of arc-length technique as a nonlinear structural analysis method are checked at each load increment. Thus, a penalization process utilized for inclusion of unfeasible designations to genetic search is correspondingly neglected. In order to solve this complex design optimization problem with multiple objective functions, Non-dominated Sorting Genetic Algorithm II (NSGA II) approach is employed as a multi-objective optimization tool. Furthermore, the flexibility of proposed optimization is enhanced thereby integrating an automatic dome generating tool. Thus, it is possible to generate three distinct sphere-shaped dome configurations with varying topologies. It is demonstrated that the inclusion of brace (diagonal) members into the geometrical configuration of dome structure provides a weight-saving dome designation with higher load-carrying capacity. The proposed optimization approach is recommended for the design optimization of geometrically nonlinear dome structures.