• Title/Summary/Keyword: geometrically exact analysis

Search Result 36, Processing Time 0.022 seconds

Nonlinear Numerical Analysis and Experiment of Composite Laminated Plates (복합재 적층판재의 비선형 수치해석 및 실험)

  • 조원만;이영신;윤성기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2915-2925
    • /
    • 1993
  • A finite element program using degenerated shell element was developed to solve the geometric, material and combined nonlinear behaviors of composite laminated plates. The total Lagrangian method was implemented for geometric nonlinear analysis. The material nonlinear behavior was analyzed by considering the matrix degradation due to the progressive failure in the matrix and matrix-fiber interface after initial failure. The results of the geometric nonlinear analyses showed good agreements with the other exact and numerical solutions. The results of the combined nonlinear analyses considered both geometric and material nonlinear behaviors were compared to the experiments in which a concentrated force was applied to the center of the square laminated plate with clamped four edges.

Shape Design Optimization using Isogeometric Analysis Method (등기하 해석법을 이용한 형상 최적 설계)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.216-221
    • /
    • 2008
  • Shape design optimization for linear elasticity problem is performed using isogeometric analysis method. In many design optimization problems for real engineering models, initial raw data usually comes from CAD modeler. Then designer should convert this CAD data into finite element mesh data because conventional design optimization tools are generally based on finite element analysis. During this conversion there is some numerical error due to a geometry approximation, which causes accuracy problems in not only response analysis but also design sensitivity analysis. As a remedy of this phenomenon, the isogeometric analysis method is one of the promising approaches of shape design optimization. The main idea of isogeometric analysis is that the basis functions used in analysis is exactly same as ones which represent the geometry, and this geometrically exact model can be used shape sensitivity analysis and design optimization as well. In shape design sensitivity point of view, precise shape sensitivity is very essential for gradient-based optimization. In conventional finite element based optimization, higher order information such as normal vector and curvature term is inaccurate or even missing due to the use of linear interpolation functions. On the other hands, B-spline basis functions have sufficient continuity and their derivatives are smooth enough. Therefore normal vector and curvature terms can be exactly evaluated, which eventually yields precise optimal shapes. In this article, isogeometric analysis method is utilized for the shape design optimization. By virtue of B-spline basis function, an exact geometry can be handled without finite element meshes. Moreover, initial CAD data are used throughout the optimization process, including response analysis, shape sensitivity analysis, design parameterization and shape optimization, without subsequent communication with CAD description.

  • PDF

A Finite Element Analysis based on Higher-Order Zig-Zag Shell Theory for Laminated Composites with Multiple Delamination (다중 층간 분리부가 내재된 복합재 쉘 고차 지그재그 모델의 유한요소 해석)

  • 오진호;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.229-236
    • /
    • 2004
  • A new three-node triangular shell element based on higher order zig-zag theory is developed for laminated composite shells with multiple delaminations. The present higher order zig-zag shell theory is described in a general curvilinear coordinate system and in general tensor notation. All the complicated curvatures of surface including twisting curvatures can be described in an exact manner in the present shell element because this element is based on geometrically exact surface representation. The displacement field of the proposed finite element includes slope of deflection. which requires continuity between element interfaces. Thus the nonconforming shape function of Specht's three-node triangular plate bending element is employed to interpolate out-of-plane displacement. The present element passes the bending and twisting patch tests in flat surface configurations. The developed element is evaluated through the buckling problems of composite cylindrical shells with multiple delaminations. Through the numerical examples it is demonstrated that the proposed shell element is efficient because it has minimal degrees of freedom per node. The accuracy of the present element is demonstrated in the prediction of buckling loads and buckling modes of shells with multiple delaminations. The present shell element should serve as a powerful tool in the prediction of buckling loads and modes of multi-layered thick laminated shell structures with arbitrary-shaped multiple delaminations.

  • PDF

A Finite Element Analysis based on Higher-Order Zig-Zag Shell Theory for Laminated Composites Cylinderical Shell with Multiple Delaminations (다중 층간분리부가 있는 복합재 원통쉘의 지그재그 고차이론에 기초한 유한요소 진동해석)

  • Cho Maenghyo;Oh Jinho;Kim Heung-Soo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.69-72
    • /
    • 2004
  • A new three-node triangular shell element based on higher order zig-zag theory is developed for laminated composite shells with multiple delaminations. The present higher order zig-zag shell theory is described in a general curvilinear coordinate system and in general tensor notation. All the complicated curvatures of surface including twisting curvatures can be described in an exact manner in the present shell element because this element is based on geometrically exact surface representation. The displacement field of the proposed finite element includes slope of deflection, which requires continuity between element interfaces. Thus the nonconforming shape function of Specht's three-node triangular plate bending element is employed to interpolate out-of-plane displacement. The present element passes the bending and twisting patch tests in flat surface configurations. The developed element is evaluated through the eigenvalue problems of composite cylindrical shells with multiple delaminations. Through the numerical examples it is demonstrated that the proposed shell element is efficient because it has minimal degrees of freedom per node. The present shell element should serve as a powerful tool in the prediction of natural frequency and modes of multi-layered thick laminated shell structures with arbitrary-shaped multiple delaminations.

  • PDF

Visualization of Integration of Surface Geometric Modeling and Shell Finite Element Based on B-Spline Representation (스플라인 곡면 모델링과 쉘 유한요소와의 연동 가시화)

  • 조맹효;노희열;김현철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.505-511
    • /
    • 2002
  • In the present study, we visualize the linkage framework between geometric modeling and shell finite element based on B-spline representation. For the development of a consistent shell element, geometrically exact shell elements based on general curvilinear coordinates is provided. The NUBS(Non Uniform B-Spline) is used to generate the general free form shell surfaces. Employment of NUBS makes shell finite element handle the arbitrary geometry of the smooth shell surfaces. The proposed shell finite element .model linked with NUBS surface representation provides efficiency for the integrated design and analysis of shell surface structures. The linkage framework can potentially provide efficient integrated approach to the shape topological design optimizations for shell structures.

  • PDF

Isogeometric Shape Design Optimization of Structures under Stress Constraints (응력 제한조건을 갖는 구조물의 아이소-지오메트릭 형상 최적설계)

  • Ahn, Seung-Ho;Kim, Min-Geun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.275-281
    • /
    • 2010
  • In this paper, the design optimization of structures with stress constraints is performed using isogeometric shape optimization method. The stress constraints have an important role in design optimization problems since stress concentration could result in structural failure. To represent exact geometry in analysis, the isogeometric analysis method uses the same basis functions as used in the CAD geometry. The geometrically exact model can be used in both stress and design sensitivity analyses so that it can yield more precise optimal design than finite element one. Through numerical examples, the isogeometric approach turns out to be effective in shape optimization problems under stress constraints.

Buckling of restrained steel columns due to fire conditions

  • Hozjan, Tomaz;Planinc, Igor;Saje, Miran;Srpcic, Stanislav
    • Steel and Composite Structures
    • /
    • v.8 no.2
    • /
    • pp.159-178
    • /
    • 2008
  • An analytical procedure is presented for the determination of the buckling load and the buckling temperature of a straight, slender, geometrically perfect, axially loaded, translationally and rotationally restrained steel column exposed to fire. The exact kinematical equations of the column are considered, but the shear strain is neglected. The linearized stability theory is employed in the buckling analysis. Behaviour of steel at the elevated temperature is assumed in accordance with the European standard EC 3. Theoretical findings are applied in the parametric analysis of restrained columns. It is found that the buckling length factor decreases with temperature and depends both on the material model and stiffnesses of rotational and translational restraints. This is in disagreement with the buckling length for intermediate storeys of braced frames proposed by EC 3, where it is assumed to be temperature independent. The present analysis indicates that this is a reasonable approximation only for rather stiff rotational springs.

Vibration Attenuation in Helicopters using an Active Trailing-edge Flap Blade

  • Natarajan, Balakumaran;Eun, WonJong;Shin, SangJoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.347-352
    • /
    • 2013
  • Seoul National University Flap (SNUF) blade is a small-scaled rotor blade incorporating a small trailing-edge flap control surface driven by piezoelectric actuators at higher harmonics for vibration attenuation. Initially, the blade was designed using two-dimensional cross-section analysis and a geometrically exact one-dimensional beam analysis, and material configuration was finalized. Flap deflection angle of ${\pm}45^{\circ}$ was established as the criterion for better vibration reduction performance based on an earlier simulation. Flap linkage mechanism design is carried out and static bench tests are conducted to verify the flap actuation mechanism performance. Different versions of test beds are developed and tested with the flap and chosen APA 200M piezoelectric actuators. Through significant improvements, a maximum deflection of ${\pm}3.7^{\circ}$ was achieved. High frequency experiments are conducted to evaluate the performance and transfer function of the test bed is determined experimentally. As the static tests are almost completed, rotor power required for testing the blade in whirl tower (centrifugal environment) is calculated and further preparations are under way.

  • PDF

Wing Design Optimization of a Solar-HALE Aircraft

  • Lim, JaeHoon;Choi, Sun;Shin, SangJoon;Lee, Dong-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.219-231
    • /
    • 2014
  • We develop a preliminary design optimization procedure in this paper regarding the wing planform in a solar-powered high-altitude long-endurance unmanned aerial vehicle. A high-aspect-ratio wing has been widely adopted in this type of a vehicle, due to both the high lift-to-drag ratio and lightweight design. In the preliminary design, its characteristics need to be addressed correctly, and analyzed in an appropriate manner. In this paper, we use the three-dimensional Euler equation to analyze the wing aerodynamics. We also use an advanced structural modeling approach based on a geometrically exact one-dimensional beam analysis. Regarding the structural integrity of the wing, we determine detailed configuration parameters, specifically the taper ratio and the span length. Next, we conduct a multi-objective optimization scheme based on the response surface method, using the present baseline configuration. We consider the structural integrity as one of the constraints. We reduce the wing weight by approximately 25.3 % from that in the baseline configuration, and also decrease the power required approximately 3.4 %. We confirm that the optimized wing has sufficient flutter margin and improved static longitudinal/directional stability characteristics, as compared to those of the baseline configuration.

Development of Framework of Linkage between Geometric Modeling and Finite Element Analysis for Shape Optimization of Shell Surfaces (쉘 곡면 형상의 최적 설계를 위한 유한요소해석과 기하학적 모델링의 연동)

  • Kim,Hyeon-Cheol;No,Hui-Yeol;Jo,Maeng-Hyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.27-35
    • /
    • 2003
  • Geometric modeling tool and analysis tool of shell surface have been developed in the different environments and purposes. Thus they cannot be naturally fitted to each other for the integrated design and analysis. In the present study, an integrated framework of geometric modeling, analysis, and design optimization is proposed. It is based on the common representation of B-spline surface patch. In the analysis module, a geometrically-exact shell finite element is implemented. In shape optimization module, control points of the surface are selected as design variables. For the computation of shape sensitivities, semi-analytical method is used. Sequential linear programming(SLP) is adopted for the shape optimization of surfaces. The developed integrated framework should serve as a powerful tool for the geometric modeling, analysis, and shape design of surfaces.