• 제목/요약/키워드: geometrical structures

검색결과 611건 처리시간 0.027초

Aerodynamic stability analysis of geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction

  • Xu, Yun-ping;Zheng, Zhou-lian;Liu, Chang-jiang;Wu, Kui;Song, Wei-ju
    • Wind and Structures
    • /
    • 제26권6호
    • /
    • pp.355-367
    • /
    • 2018
  • This paper studies the aerodynamic stability of a tensioned, geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction. Considering flow separation, the wind field around membrane structure is simulated as the superposition of a uniform flow and a continuous vortex layer. By the potential flow theory in fluid mechanics and the thin airfoil theory in aerodynamics, aerodynamic pressure acting on membrane surface can be determined. And based on the large amplitude theory of membrane and D'Alembert's principle, interaction governing equations of wind-structure are established. Then, under the circumstance of single-mode response, the Bubnov-Galerkin approximate method is applied to transform the complicated interaction governing equations into a system of second-order nonlinear differential equation with constant coefficients. Through judging the frequency characteristic of the system characteristic equation, the critical velocity of divergence instability is determined. Different parameter analysis shows that the orthotropy, geometrical nonlinearity and scantling of structure is significant for preventing destructive aerodynamic instability in membrane structures. Compared to the model without considering flow separation, it's basically consistent about the divergence instability regularities in the flow separation model.

Energy absorption investigation of square CFRP honeycomb reinforced by PMI foam fillers under quasi-static compressive load

  • Zhou, Hao;Guo, Rui;Bao, Kuo;Wei, Haiyang;Liu, Rongzhong
    • Steel and Composite Structures
    • /
    • 제33권6호
    • /
    • pp.837-847
    • /
    • 2019
  • A type of hybrid core made up of thin-walled square carbon fiber reinforced polymer (CFRP) honeycomb and Polymethacrylimide (PMI) foam fillers was proposed and prepared. Numerical model of the core under quasi static compression was established and validated by corresponding experimental results. The compressive properties of the core with different configurations were analyzed through numerical simulations. The effect of the geometrical parameters and foam fillers on the compressive response and energy absorption of the core were analyzed. The results show that the PMI foam fillers can significantly improve the compressive strength and energy absorption capacity of the square CFRP honeycomb. The geometrical parameters have marked effects on the compressive properties of the core. The research can give a reference for the application of PMI foam materials in energy absorbing structures and guide the design and optimization of lightweight and energy efficient cores of sandwiches.

광섬유 FBG센서를 이용한 원주형 구조물의 2차원 상대변위 모니터링기법 개발 (Development of a Convergence Monitoring Method for Cylindrical Structures by Optical Fiber Bragg Grating Sensor)

  • 노병철;김종우;강석화
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권4호
    • /
    • pp.160-166
    • /
    • 2006
  • 본 연구에서는 광섬유 FBG 센서를 이용, 곡률반경을 고려한 이 방향 변위(Two-Way Displacement)를 측정하여 변형각을 환산함으로써 상대좌표를 구하는 알고리즘을 정립하였으며 이를 이용하면 작은 변형에 대해서도 매우정확하게 상대변위를 구할 수 있음을 알 수 있었다. 이를 확인하기 위해 4.5m높이의 H형강에 고안된 이 방향 광섬유센서를 부착하여 횡 방향으로 외력을 가해서 발생한 변위를 수준측량과 일반적인 전자식 변위계로 동시에 측정하여 각각의 측정성능을 비교분석하였다. 그 결과, 광섬유센서의 분해능은 다른 센서시스템에 비해 월등하였으며 이차원 상대좌표의 측정이 가능함을 확인하였다.

탄성 현수선 요소를 이용한 케이블 구조물의 비선형 동적해석 (Non-linear Dynamic Analysis of Cable Structures Using Elastic Catenary)

  • 황진홍;이상주;한상을
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.473-480
    • /
    • 2005
  • Geometrical non-linearity due to the flexibility of cables must be considered efficiently in the dynamic analysis of cable structures. In this paper, formulation of tangent stiffness matrix of elastic catenary cable is derived by using relative nodal displacements, self-weight and unstressed cable length. Free vibration analysis of simply supported cable using elastic catenary cable elements is conducted and compared with that using truss elements. The result shows that elastic catenary cable elements are more compatible than truss elements in the case of analysis of cable structures. Furthermore, the characteristic of dynamic behaviors of cable structures by temporary unstability phenomenon is confirmed.

  • PDF

변형종속 압력하중을 받는 셸구조물의 해석 (Analysis of Shell Structures Subjected to Deformation Dependent Pressure Load)

  • 장명호;권택진
    • 한국공간구조학회논문집
    • /
    • 제2권1호
    • /
    • pp.93-102
    • /
    • 2002
  • Pressure loads caused by gas, water and wind are the most important load cases in structural analysis. Often the pressure loads are approximated by constant directional loads since it is difficult to evaluate the exact value. However, the pressure load is defined as a displacement dependent one and it is necessary to consider the follower effects of the load in analysis procedure. In this study, the large deformation analysis considering geometrical nonlinearity for shell structures under pressure loads is presented. Finite element by using a three-node flat triangular shell element is formulated and the follower effects of the pressure load are included in the formulation. Some of results are presented for cantilevered beam under uniform external pressure and thin circular ring under non-uniform external pressure. The present results are in good agreement with the results available in existing literature and commercial software ABAQUS.

  • PDF

Geometrically nonlinear analysis of planar beam and frame structures made of functionally graded material

  • Nguyen, Dinh-Kien;Gan, Buntara S.;Trinh, Thanh-Huong
    • Structural Engineering and Mechanics
    • /
    • 제49권6호
    • /
    • pp.727-743
    • /
    • 2014
  • Geometrically nonlinear analysis of planar beam and frame structures made of functionally graded material (FGM) by using the finite element method is presented. The material property of the structures is assumed to be graded in the thickness direction by a power law distribution. A nonlinear beam element based on Bernoulli beam theory, taking the shift of the neutral axis position into account, is formulated in the context of the co-rotational formulation. The nonlinear equilibrium equations are solved by using the incremental/iterative procedure in a combination with the arc-length control method. Numerical examples show that the formulated element is capable to give accurate results by using just several elements. The influence of the material inhomogeneity in the geometrically nonlinear behavior of the FGM beam and frame structures is examined and highlighted.

2단계 모세관 리소그라피 기술을 이용한 마이크로/나노 병합구조 공정 기술 및 수학적 모델을 통한 표면 특성 분석 (Fabrication of polymer hierarchical structures by two-step temperature-directed capillary)

  • 서갑양;정훈의;이성훈;김재관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.272-274
    • /
    • 2005
  • A simple method for fabricating micro/nanoscale hierarchical structures is presented using a two-step temperature-directed capillary molding technique. This lithographic method involves a sequential application of molding process in which a uniform polymer-coated surface is molded with a patterned mold by means of capillary force above the glass transition temperature of the polymer. Using this approach, multiscale hierarchical structures for biomimetic functional surfaces can be fabricated with precise control over geometrical parameters and the wettability of a solid surface can be designed in a controllable manner.

  • PDF

Nonlinear finite element analysis of circular concrete-filled steel tube structures

  • Xu, Tengfei;Xiang, Tianyu;Zhao, Renda;Zhan, Yulin
    • Structural Engineering and Mechanics
    • /
    • 제35권3호
    • /
    • pp.315-333
    • /
    • 2010
  • The structural behaviors of circular concrete filled steel tube (CFT) structures are investigated by nonlinear finite element method. An efficient three-dimensional (3D) degenerated beam element is adopted. Based on those previous studies, a modified stress-strain relationship for confined concrete which introduces the influence of eccentricity on confining stress is presented. Updated Lagrange formulation is used to consider the geometrical nonlinearity induced by large deformation effect. The nonlinear behaviors of CFT structures are investigated, and the accuracy of the proposed constitutive model for confined concrete is mainly concerned. The results demonstrate that the confining effect in CFT elements subjected to combining action of axial force and bending moment is far sophisticated than that in axial loaded columns, and an appropriate evaluation about this effect may be important for nonlinear numerical simulation of CFT structures.

복합다양체 솔리드 모델러의 자료구조 비교 (A Cmparion of Data Structures for Non-manifold Solid Modelers)

  • 최국헌;한순흥
    • 한국정밀공학회지
    • /
    • 제12권11호
    • /
    • pp.74-81
    • /
    • 1995
  • Several non-manifold data structures have been compared, which are radial-edge data structure, partial-face data structure, vertex-based data structure, and Yamaguchi's data structrue. All the entities in the data structures are classified into common entities and special entities. The entities are also classified as model entities, primitive entities bounding entities, and coupling entities. The four data structures for nonmanifold solid modelers are compared in terms of accessing efficiency, storage requirements, and inclusion of circulation. The results of comparison will serve as the basis to develope a nonmanifold modeler.

  • PDF

기학학적 비선형을 고려한 Zetlin형 케이블 돔 구조물의 장력제어 기법에 관한 연구 (A Study on the Stress Control Technique of Zetlin-Typed Cable Dome Structures Considering Geometrical Nonlinearity)

  • 정을석;손수덕;김승덕
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2005년도 춘계학술발표회 및 정기총회 2권1호(통권2호)
    • /
    • pp.116-124
    • /
    • 2005
  • The recent large-spatial structures are frequently made from light-weight structural system and it has a good mechanical efficiency and uses new materials. The large space is made by light-weight structural system using tension members mainly, and generally it is called a soft structure. The cable dome structures which are a soft structures are very flexible, the stresses and nodal coordinates of other members are changed when we control the stress of one member. Therefore, we have to do two kind of works for effective and accurate construction of the cable dome structures. The first work is making a working scenario to complete the final objective form and the second is revising constructional errors occurred in process of the actual works. These works are called constructional analysis. At this time, we have to consider geometric nonlinearity to reflect the sensitivity by the initial stresses of cable dome structures, and constructional analysis comes down to a nonlinear problem after all. In this study, we try to approach the constructional analysis of the cable dome structures using the numerical method, and then verify it.

  • PDF