• Title/Summary/Keyword: geometrical shapes

Search Result 168, Processing Time 0.03 seconds

Finite Difference Analysis of Laminated Composite Shell Structures with Various Geometrical Shapes (다양한 기하학적 형상을 갖는 복합 적층쉘 구조의 유한차분해석)

  • Park, Hae-Gil;Lee, Sang-Youl;Chang, Suk-Yoon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.24-34
    • /
    • 2010
  • This paper analyzed the partial differential equations of laminated composite shells of revolution by using the finite difference method. The proof that numerical results are reasonable and accurate is obtained through converge ratio analysis and commercial program LUSAS for the structural analysis. The purpose of this study is to examine closely the engineering advantages and to analyze the structural behaviors of the anisotropic shells of revolution. Thus, the relevant reinforcement and most suitable arrangement of fiber to produce the highest strength are proposed through the numerical results according to a variety of parameter study. Namely, the distribution of displacements and stress resultants are analyzed according to the change of meridian's curvature, the ratio of height-width of shell, subtended angle, fiber angle, and so on. Using these distribution, the most suitable shell may be proposed to produce the highest strength. Also, the configuration of the entire laminated composite conical shells is analysed, and a variety of the design criterion of circular conical shell are proposed and studied in engineering view points.

  • PDF

Research on a New Vision Test Chart Measuring Visual and Spatial Sense of Moire Fringes (무아레 무늬의 시각적 공간감각을 측정하는 시표로서의 가능성 조사)

  • Woo, Hyun Kyung;Lee, Seongjae;Jeong, Youn Hong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.3
    • /
    • pp.241-245
    • /
    • 2010
  • Purpose: In this work we suggested a grating chart of vision test which could be used to measure the sense of distance and motion of object. Methods: A couple of gratings with periodic structure were fabricated. Through a lens the grating images showing geometrical shapes were projected on a vision test chart in order to form a new grating chart of vision test. In rotating and translating the gratings the examinee perceived the variation of position of gratings by the variation of the sense of distance and motion. Results: The results of the sense of distance and motion measured in rotating and translating the gratings showed the average errors of ~2.98% and ~1.73% at $\theta=15^{\circ}$ respectively compared to calculated values. Conclusions: The grating chart of vision test suggested in this work can be used as a new test chart that lets an examinee perceive a sense of distance and motion of object.

Middle and High School Students' Mental Representation on Electric Circuits (중.고등학교 학생들의 전기 회로도에 관한 표상)

  • Choi, Kwan-Soon;Park, Yang-Yoon;Kim, Beom-Ki
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.3
    • /
    • pp.612-620
    • /
    • 2004
  • The purpose of this study was to investigate how middle and high school students represent circuit diagrams with different shapes but electrically same. What prototypes of circuit which students possessed were, how students represented the connection of resistors, and what criteria used while grouping the circuit diagrams were investigated. The participants were 10 middle and 10 high school students. The results show that they represented the circuit diagrams by the geometrical resistor configurations rather than physics principles, not considering the presence of a junction or a battery on the branch. This representation was constrained by the circuit prototypes. Middle and High school students seems to have the own way of representing circuit diagrams without considering physics principles.

A Study on the Russian Textile Design (러시아 텍스타일 디자인에 관한 연구 -혁명기를 중심으로-)

  • 이혜주
    • Journal of the Korean Home Economics Association
    • /
    • v.38 no.1
    • /
    • pp.25-38
    • /
    • 2000
  • This study focuses on the Russian Constructivist Textile Design in the post-revolutionary period, of the early 20th century. Russian textile of the time is highly valued in the west in terms of innovative changes in aesthetic directions, which has become one of the most important centers for the development of new textiles, or the origin of industrial design. Most of brilliant mass-production patterns were produced specially by the pioneers of constructivists such as Stepanova and Popova who were influenced by 'Maxism' through the Revolution regarded themselves as productivists for the proletariat. They were inspired by the avant-garde movements, which were involved with traditionalism, futuristic mechanism, stylization of nature, pure geometrical and abstract form. Early textile design was based on the relationship between the graphic methods of design and the technology because they regarded art as physical, intellectual and technical production. They created all the excitement made from the primary simplest forms of precise mathmatical shapes, such as the circle, the triangle, the rectangle and horizontle and vertical lines. These geometric design can be interpreted as the mechanization of the artists'labor, or methods in line with the technology of mass production, however partly roots in the rich tradition of Russian decorative art. On the other hand, stable crystalline construction on the surface reflect urban architectural complex, and the world of industry in graphic form. They were interested in illusion of movement, cinematic movement of vertical linear rhythms, optical formations and vibrations, by composing a multi-leveled constructions by several spatial planes, or color-field, and combining structures of several intersecting matrices, and superimposing parts of the forms on each other. All these characteristics of the Russian textile designs reflect the complex interactions between 'art and society' of Constructivist's idea and represent the traits of the epoch.

  • PDF

Bayesian Sensor Fusion of Monocular Vision and Laser Structured Light Sensor for Robust Localization of a Mobile Robot (이동 로봇의 강인 위치 추정을 위한 단안 비젼 센서와 레이저 구조광 센서의 베이시안 센서융합)

  • Kim, Min-Young;Ahn, Sang-Tae;Cho, Hyung-Suck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.381-390
    • /
    • 2010
  • This paper describes a procedure of the map-based localization for mobile robots by using a sensor fusion technique in structured environments. A combination of various sensors with different characteristics and limited sensibility has advantages in view of complementariness and cooperation to obtain better information on the environment. In this paper, for robust self-localization of a mobile robot with a monocular camera and a laser structured light sensor, environment information acquired from two sensors is combined and fused by a Bayesian sensor fusion technique based on the probabilistic reliability function of each sensor predefined through experiments. For the self-localization using the monocular vision, the robot utilizes image features consisting of vertical edge lines from input camera images, and they are used as natural landmark points in self-localization process. However, in case of using the laser structured light sensor, it utilizes geometrical features composed of corners and planes as natural landmark shapes during this process, which are extracted from range data at a constant height from the navigation floor. Although only each feature group of them is sometimes useful to localize mobile robots, all features from the two sensors are simultaneously used and fused in term of information for reliable localization under various environment conditions. To verify the advantage of using multi-sensor fusion, a series of experiments are performed, and experimental results are discussed in detail.

Non-Euclidean Geometrical Characteristics of Hyperspace in Costume (복식에 표현된 초공간의 비유클리드기하학적 특성)

  • Lee, Yoon-Kyung;Kim, Min-Ja
    • Journal of the Korean Society of Costume
    • /
    • v.60 no.5
    • /
    • pp.117-127
    • /
    • 2010
  • In this study, hyperspace is a result of imagination created by means of facts and fiction, represents a transfer to determination and indetermination, and means an extension to an open form. In other words, hyperspace is a high dimensional space expanded to imagination through the combination of the viewpoint on facts in this dimension and fiction. When the 2D plane surface or 3D symmetry is destroyed, or when the frame is twisted or entangled, the non-Euclidean geometry is created eventually. And when the twisting leads to transmutation and the destruction of the form reaches the extreme; this in turn became the twisting like Mbius band. Likewise, the non-Euclidean geometry is co-related to the asymmetry of the Higgs mechanism. When the 'destruction of symmetry' is considered, symmetric theory and asymmetric world can be connected. The asymmetry in turn can maintain balance by arranging the uneven weights at different distances from the shaft. Moreover, at this the concept of the upper, lower, left and right, which was included in the original form, may be crumbled down. The destruction of the symmetry is essential in order to present forecast that coincides with the phenomenon of the real world. Non-Euclidean geometry characteristic is expressed by asymmetry, twists, and deconstruction and its representative characteristic is ambiguity. The boundary between the front, back, upper, lower, inner and outer is unclear, and it is difficult and vague to pinpoint specific location. The design that does not clearly define or determine the direction of wearing costume is indeed the non-oriented design that can be worn without getting restricted by specific direction such as front and back. Non-Euclidean geometry characteristic of hyperspace have been applied to create new shapes through the modification of the substance from traditional clothing of the eastern world to modern fashion. The way of thinking in the 'hyperspace' that used to be expressed in the costumes of the east and the west in the past became the forum for unlimited creation.

A Study on the Characteristics of 3D Printing Jewelry Design Utilizing with Fractal Geometry (프랙탈 기하학을 적용한 프린팅 주얼리 디자인 3D 특성)

  • Choi, Kyunghee
    • Journal of Fashion Business
    • /
    • v.21 no.5
    • /
    • pp.136-150
    • /
    • 2017
  • 3D printing has grown tremendously as the most noteworthy new technology in the manufacturing industries. In addition, the rapid development of computer science technology with 3D printing has created a new paradigm called Fractal Geometry, or a new form of digital art. This study explores the formative characteristics of 3D printing jewelry based on presentation of fractal geometry by classification of 3D printing jewelry's morphological types that except for producible shape with traditional mold manufacturing methods. The results of the study are as follows. The morphological characteristics of 3D printed jewelry are divided into their constitutive shapes by the repetition of the unit. The organic shape determined by superposition or overlapping, the systematic shape by distortion caused by distortion, and the variation in scaling by scaling. The formative characteristics, which are drawn from a study on the shape expression of 3D printed jewelry design using fractal geometry, consist of continuity, geometrical characteristics, and exaggeration. Continuity creates a new and self-assigned new space through a recursive structure through a cyclic structure that is formed along a single directional basis. The geometry of the geometry forms a three-dimensional and constructive structure comprised of the same size and structure of the same sized unit under the mathematical order of the geometry of Fractal's geometry. Exaggeration demonstrates the informal beauty and the maximization of the shape by expanding the scaling or superposition of a unit, by scaling the scale or he distortion of the units.

Analysis of surface-relief profile for TPHK(Telecentric Paraxial Holographic Kinoform) as a fourier-transform lens using exact raytracking (광선추적법에 의한 푸리에변환 렌즈로서의 TPHK(Telecentric Paraxial Holographic Kinoform)의 표면양각형태에 대한 분석)

  • 김성우;조두진
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.2
    • /
    • pp.51-58
    • /
    • 1998
  • We investigated surface-relief profiles of the TPHK(telecentric paraxial holographic kinofrm) used as a Fourier-transform lens employing exact geometrical raytracing. For the TPHK of F/8 and focal length of 15 mm, we consider the cases where the thickness of the substrate is 0 and 50 ${\mu}{\textrm}{m}$, dividing the surface-relif profiles into fifty steps from plano-convex to convexplano shapes and varying the angle of incidence($0^{\circ},{2.5}^{\circ},5^{\circ}$). In order to identify appropriate surface-relief profiles, we employ, as criteria of performance, rms spot size, rms deviation from $f{\sin}{\theta}$, peak position and FWHM(full width at half maximum), number of rays abandoned from raytracing etc., which are determined from the result of exact raytracing. It is found that the profile with 80% of its relief thickness facing the image plane gives the best performance regardless of the presence of substrate.

  • PDF

A study on the Fatigue Life Prediction Method of the Spot-welded Lap Joint (점용접이음재의 피로수명 예측기법에 관한 연구)

  • 손일선;배동호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.110-118
    • /
    • 2000
  • For reasonable fatigue design and estimation of fatigue durability considered fatigue strength and stiffness of the automotive body structure, many fatigue data must be insured according to the shapes, materials, and welding conditions of the spot welded lap joints. However, because it is actually difficult problem, there is need to establish a new method to be able to predict its fatigue life without any additional fatigue tests. Therefore, In order to improve such problems, in this study, the maximum stress function presenting the $\delta\sigma_{1max}―\delta P$ relation was defined form the relation between $\delta\sigma_{1max}-N_f$ and ${\delta}P-N_f$. By using the fatigue data on the IB type spot-welded lap joints previously obtained from the fatigue test results, fatigue life of the spot-welded lap joint previously obtained from the fatigue test results, fatigue life of the spot-welded lap joint having a certain dimension was tried to predict without any additional fatigue tests. And, its result was verified by ${\delta}P-$N_f$ curves. Obtained conclusion are as follows, 1) a maximum stress function considered the relation of the maximum principal stress, fatigue load, and the effects of geometrical factors of the IB type spot-welded lap joint was suggested. 2) the fatigue life predicted by the maximum principal stress function and the relation of $\delta\sigma_{1max}-N_f$ was well agreed with the fatigue life obtained through the actual fatigue test result. 3) the fatigue life of the IB type spot-welded lap joint having a certain dimension is able to be predicted without any additional fatigue tests from the fatigue life prediction method by the maximum principal stress function.

  • PDF

Observational test of CME cone types using SOHO/LASCO and STEREO/SECCHI during 2010.12-2011.06

  • Na, Hyeonock;Jang, Soojeong;Lee, Jae-Ok;Lee, Harim;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.72.2-72.2
    • /
    • 2014
  • We have made a comparison of three cone models (an asymmetric cone model, an ice-cream cone model, and an elliptical cone model) in terms of space weather application. We found that CME angular widths obtained by three cone models are quite different one another even though their radial velocities are comparable with one another. In this study, we investigate which cone model is proper for halo CME morphology and whether cone model parameters are similar to observations. For this, we look for CMEs which are identified as halo CMEs by one spacecraft and as limb CMEs by the other ones. For this we use SOHO/LASCO and STEREO/SECCHI data during the period from 2010 December to 2011 June when two spacecraft were separated by $90{\pm}10$ degrees. From geometrical parameters of these CMEs such as their front curvature, we classify them into two groups: shallow cone (5 events) and near full-cone (28 events). Noting that the previous cone models are based on flat cone or shallow cone shapes, our results imply that a cone model based on full cone shape should be developed. For further analysis, we are estimating the angular widths of these CMEs near the limb to compare them with those from the cone models. This result shows that the angular widths of the ice-cream cone model are well correlated (CC = 0.81) with those of observations.

  • PDF