• Title/Summary/Keyword: geometrical relationship

Search Result 151, Processing Time 0.026 seconds

Computational thermal stability and critical temperature buckling of nanosystem

  • Chengda Zhang;Haifeng Hu;Qiang Ma;Ning Wang
    • Advances in nano research
    • /
    • v.14 no.6
    • /
    • pp.575-590
    • /
    • 2023
  • Many of small-scale devices should be designed to tolerate high temperature changes. In the present study, the states of buckling and stability of nano-scale cylindrical shell structure integrated with piezoelectric layer under various thermal and electrical external loadings are scrutinized. In this regard, a multi-layer composite shell reinforced with graphene nano-platelets (GNP) having different patterns of layer configurations is modeled. An outer layer of piezoelectric material receiving external voltage is also attached to the cylindrical shell for the aim of observing the effects of voltage on the thermal buckling condition. The cylindrical shell is mathematically modeled with first-order shear deformation theory (FSDT). Linear elasticity relationship with constant thermal expansion coefficient is used to extract the relationship between stress and strain components. Moreover, minimum virtual work, including the work of the piezoelectric layer, is engaged to derive equations of motion. The derived equations are solved using numerical method to find out the effects of temperature and external voltage on the buckling stability of the shell structure. It is revealed that the boundary condition, external voltage and geometrical parameter of the shell structure have notable effects on the temperature rise required for initiating instability in the cylindrical shell structure.

Automatic Camera Pose Determination from a Single Face Image

  • Wei, Li;Lee, Eung-Joo;Ok, Soo-Yol;Bae, Sung-Ho;Lee, Suk-Hwan;Choo, Young-Yeol;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.12
    • /
    • pp.1566-1576
    • /
    • 2007
  • Camera pose information from 2D face image is very important for making virtual 3D face model synchronize with the real face. It is also very important for any other uses such as: human computer interface, 3D object estimation, automatic camera control etc. In this paper, we have presented a camera position determination algorithm from a single 2D face image using the relationship between mouth position information and face region boundary information. Our algorithm first corrects the color bias by a lighting compensation algorithm, then we nonlinearly transformed the image into $YC_bC_r$ color space and use the visible chrominance feature of face in this color space to detect human face region. And then for face candidate, use the nearly reversed relationship information between $C_b\;and\;C_r$ cluster of face feature to detect mouth position. And then we use the geometrical relationship between mouth position information and face region boundary information to determine rotation angles in both x-axis and y-axis of camera position and use the relationship between face region size information and Camera-Face distance information to determine the camera-face distance. Experimental results demonstrate the validity of our algorithm and the correct determination rate is accredited for applying it into practice.

  • PDF

The Analysis of Children's Reasoning Types In Identifying Examples and Non-examples of a Triangle (삼각형인 예와 삼각형이 아닌 예의 식별 과정에서 나타난 초등학생의 추론 유형 분석)

  • Kim, Kyung-Mi;Kim, Hyun-Eun
    • Journal of the Korean School Mathematics Society
    • /
    • v.13 no.2
    • /
    • pp.263-287
    • /
    • 2010
  • The purposes of the study were to investigate how children define a triangle, their reasoning types in identifying examples and non-examples of a triangle, and the relationship between their reasoning types and geometrical levels. Twenty-nine students consisted of 3th to 6th grades were involved in the study. Using the van Hiele levels of geometrical thought, children's reasoning types for identifying a figure as a triangle or non-triangle were categorized into visual reasoning, reasoning based on the figure's attributes and formal reasoning. The figure's attributes were further divided into critical and non-critical attributes. Most children identified a figure as a triangle or non-triangle based on critical attributes of the figure(e.g. closed figure, three, vertices, straight sides etc.) Some children identified a figure based on non-critical attributes of the figure(e.g. the length of the sides, the measurement of the angles, or the orientation of the figure). Particularly, some children who had lower levels of geometry identified a figure using visual reasoning, taking in the whole shape without considering that the shape is made up of separate components.

  • PDF

A Study on Two-Dimensional Forming of Ship Hull Plate by Geometrical Approach (곡가공 공정에서 기하학적 접근법에 의한 2차원 성형에 관한 연구)

  • Seong, Woo-Jae;Ahn, Jun-Su;Kim, Hyun-Uk;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.27 no.2
    • /
    • pp.32-37
    • /
    • 2009
  • In shipyard, plate forming is widely used to form the ship hull plate in various shapes. Line heating method by using a flame torch is one of the major shipbuilding processes carried out by skilled workers. Since the forming characteristics depend upon their experiences in manual forming, there are much variations between products and difficulties in communication between engineers and workers. Hence, it needs to develop an automatic forming system which can not only reduce the working time and rework costs but also improve the working environment and hull forming productivity. One of the final goals of plate forming automation is to form a target shape from the initial plate automatically. For automated plate forming, it is required to determine where and how to heat on the plate. To realize this procedure, the inverse problem should be first solved and the effect of curvature shape formed at the heating path should be investigated. In this study, the inverse problem was solved by geometrical approach using the relationship between bending angle and radius of curvature of the curved shape. In addition, experiments of two-dimensional plate forming were performed with the distance-based method considering the curved bending with curvature. The result of the formed shape agreed considerably well with the target shape.

Control of Weld Pool Size in GMA Welding Process Using Neural Networks (신경회로를 이용한 GMA 용접 공정에서의 용융지의 크기 제어)

  • 임태균;조형석;부광석
    • Journal of Welding and Joining
    • /
    • v.12 no.1
    • /
    • pp.59-72
    • /
    • 1994
  • This paper presents an on-line quality monitoring and control method to obtain a uniform weld quality in gas metal arc welding (GMAW) processes. The geometrical parameters of the weld pool such as the top bead width and the penetration depth plus half back width are utilized to assess the integrity of the weld quality. Since a good quality weld is characterized by a relatively high depth-to-width ratio in its dimensions, the second geometrical parameter is regulated to a desired one. The monitoring variables are the surface temperatures measured at various points on the top surface of the weldment which are strongly related to the formation of the weld pool The relationship between the measured temperatures and the weld pool size is implemented on the multilayer perceptrons which are powerful for realization of complex mapping characteristics through training by samples. For on-line quality monitoring and control, it is prerequisite to estimate the weld pool sizes in the region of transient states. For this purpose, the time history of the surface temperatures is used as the input to the neural estimator. The control purpose is to obtain a uniform weld quality. In this research, the weld pool size is directly regulated to a desired one. The proposed controller is composed of a neural pool size estimator, a neural feedforward controller and a conventional feedback controller. The pool size estimator predicts the weld pool size under growing. The feedforward controller compensates for the nonlinear characteristics of the welding process. A series of simulation studies shows that the proposed control method improves the overall system response in the presence of changes in torch travel speed during GMA welding and guarantees the uniform weld quality.

  • PDF

Localization for Mobile Robot Using Vertical Line Features (수직선 특징을 이용한 이동 로봇의 자기 위치 추정)

  • 강창훈;안현식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.937-942
    • /
    • 2003
  • We present a self-localization method for mobile robots using vertical line features of indoor environment. When a 2D map including feature points and color information is given, a mobile robot moves to the destination, and acquires images from the surroundings having vertical line edges by one camera. From the image, vertical line edges are detected, and pattern vectors meaning averaged color values of the left and right regions of the each line are computed by using the properties of the line and a region growing method. The pattern vectors are matched with the feature points of the map by comparing the color information and the geometrical relationship. From the perspective transformation and rigid transformation of the corresponded points, nonlinear equations are derived. Localization is carried out from solving the equations by using Newton's method. Experimental results show that the proposed method using mono view is simple and applicable to indoor environment.

Localization for Mobile Robot Using Vertical Lines

  • Kang, Chang-Hun;Ahn, Hyun-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.793-797
    • /
    • 2003
  • In this paper, we present a self-localization method for mobile robots using vertical line features of indoor environment. When a 2D map including feature points and color information is given, a mobile robot moves to the destination, and acquires images by one camera from the surroundings having vertical line edges. From the image, vertical line edges are detected, and pattern vectors meaning averaged color values of the left and right region of each line segment are computed. The pattern vectors are matched with the feature points of the map using the color information and the geometrical relationship of the points. From the perspective transformation of the corresponded points, nonlinear equations are derived. Localization is carried out from solving the equations by using Newton's method. Experimental results show that the proposed method using mono view is simple and applicable to indoor environment.

  • PDF

Representation and recognition of polyhedral objects in a single 2-D image using the signature technique (하나의 2차원 영상에서 표면의 signature를 이용한 다면체의 표현 및 인식 알고리즘)

  • 이부형;한헌수
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.2
    • /
    • pp.63-70
    • /
    • 1997
  • This paper proposes a new algorithm for recognizing polyhedral objects using a single 2-D image. It is base don a new representation scheme having two level hierarchey. In the lower level, geometrical features of each primitive surface are represented using their signatures and the variation of signature due to rotation is represented suing the rotation map. In the higher level, topological features are represented in the inter-surface description table(SDT). Based on the proposed representaton scheme, loer level database searched to find a matching primitive surface. The srotation map determines the degree of rotation as well as the matchness. If all surfaces in a test object find their matching primitive surfaces, its structural information is compared with the SDTs of object models. If primitive surfaces of a test object equal to tha tof certain model and satisfy inter-surfaces relationship in SDT, a test object is recognized as the model.

  • PDF

Human Head Mouse System Based on Facial Gesture Recognition

  • Wei, Li;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.12
    • /
    • pp.1591-1600
    • /
    • 2007
  • Camera position information from 2D face image is very important for that make the virtual 3D face model synchronize to the real face at view point, and it is also very important for any other uses such as: human computer interface (face mouth), automatic camera control etc. We present an algorithm to detect human face region and mouth, based on special color features of face and mouth in $YC_bC_r$ color space. The algorithm constructs a mouth feature image based on $C_b\;and\;C_r$ values, and use pattern method to detect the mouth position. And then we use the geometrical relationship between mouth position information and face side boundary information to determine the camera position. Experimental results demonstrate the validity of the proposed algorithm and the Correct Determination Rate is accredited for applying it into practice.

  • PDF

Modeling and Calibration of a 3D Robot Laser Scanning System (3차원 로봇 레이저 스캐닝 시스템의 모델링과 캘리브레이션)

  • Lee Jong-Kwang;Yoon Ji Sup;Kang E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.34-40
    • /
    • 2005
  • In this paper, we describe the modeling for the 3D robot laser scanning system consisting of a laser stripe projector, camera, and 5-DOF robot and propose its calibration method. Nonlinear radial distortion in the camera model is considered for improving the calibration accuracy. The 3D range data is calculated using the optical triangulation principle which uses the geometrical relationship between the camera and the laser stripe plane. For optimal estimation of the system model parameters, real-coded genetic algorithm is applied in the calibration process. Experimental results show that the constructed system is able to measure the 3D position within about 1mm error. The proposed scheme could be applied to the kinematically dissimilar robot system without losing the generality and has a potential for recognition for the unknown environment.