• Title/Summary/Keyword: geometric model

Search Result 2,069, Processing Time 0.034 seconds

Intelligent Pattern Matching Based on Geometric Features for Machine Vision Inspection (머신비전검사를 위한 기하학적 특징 기반 지능 패턴 정합)

  • Moon Soon-Hwan;Kim Gyung-Bum;Kim Tae-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.6
    • /
    • pp.1-8
    • /
    • 2006
  • This paper presents an intelligent pattern matching method that can be used to acquire the reliable calibration data for automatic PCB pattern inspection. The inaccurate calibration data is often acquired by geometric pattern variations and selecting an inappropriate model manual. It makes low the confidence of inspection and also the inspection processing time has been delayed. In this paper, the geometric features of PCB patterns are utilized to calculate the accurate calibration data. An appropriate model is selected automatically based on the geometric features, and then the calibration data to be invariant to the geometric variations(translation, rotation, scaling) is calculated. The method can save the inspection time unnecessary by eliminating the need for manual model selection. As the result, it makes a fast, accurate and reliable inspection of PCB patterns.

  • PDF

User-Steered Extraction of Geometric Features for 3D Triangular Meshes (사용자 의도에 의한 삼차원 삼각형 메쉬의 기하적 특징 추출)

  • Yoo, Kwan-Hee;Ha, Jong Sung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.9 no.2
    • /
    • pp.11-18
    • /
    • 2003
  • For extracting geometric features in 3D meshes according to user-steering with effective interactions. this paper generalizes the 2D algorithms of snapping and wrapping that. respectively. moves a cursor to a nearby feature and constructs feature boundaries. First. we define approximate curvatures and move cost functions that are the numerical values measuring the geometric characteristics of the meshes, By exploiting the measuring values. the algorithms of geometric snapping and geometric wrapping are developed and implemented. We also visualize the results from applying the algorithms to extracting geometric features of general 3D mesh models such as a face model and a tooth model.

  • PDF

Segmentation of Computed Tomography using The Geometric Active Contour Model (기하학적 동적 외곽선 모델을 이용한 X-ray 단층촬영영상의 영상추출)

  • Jang, D.P.;Kim, S.I.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.541-545
    • /
    • 1997
  • This paper presents a modified geometric active contour model or edge detection and segmentation of computed tomography(CT) scan images. The method is based on the level setup approach developed by Osher and Sethian and the modeling of propagation fronts with curvature dependent speeds by Malladi. Based on above algorithms, the geometric active contour is obtained through a particular level set of hypersurface lowing along its gradient force and curvature force. This technique retains the attractive feature which is topological and geometric flexibility of the contour in recovering objects with complex shapes and unknown topologies. But there are limitations in this algorithm which are being not able to separate the object with weak difference from neighbor object. So we use speed limitation filter to overcome those problems. We apply a 2D model to various synthetic cases and the three cases of real CT scan images in order to segment objects with complicated shapes and topologies. From the results, the presented model confirms that it attracts very naturally and efficiently to the desired feature of CT scan images.

  • PDF

Parametric study using finite element simulation for low cycle fatigue behavior of end plate moment connection

  • Lim, Chemin;Choi, Wonchang;Sumner, Emmett A.
    • Steel and Composite Structures
    • /
    • v.14 no.1
    • /
    • pp.57-71
    • /
    • 2013
  • The prediction of the low cycle fatigue (LCF) life of beam-column connections requires an LCF model that is developed using specific geometric information. The beam-column connection has several geometric variables, and changes in these variables must be taken into account to ensure sufficient robustness of the design. Previous research has verified that the finite element model (FEM) can be used to simulate LCF behavior at the end plate moment connection (EPMC). Three critical parameters, i.e., end plate thickness, beam flange thickness, and bolt distance, have been selected for this study to determine the geometric effects on LCF behavior. Seven FEMs for different geometries have been developed using these three critical parameters. The finite element analysis results have led to the development of a modified LCF model for the critical parameter groups.

A new extended Birnbaum-Saunders model with cure fraction: classical and Bayesian approach

  • Ortega, Edwin M.M.;Cordeiro, Gauss M.;Suzuki, Adriano K.;Ramires, Thiago G.
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.4
    • /
    • pp.397-419
    • /
    • 2017
  • A four-parameter extended fatigue lifetime model called the odd Birnbaum-Saunders geometric distribution is proposed. This model extends the odd Birnbaum-Saunders and Birnbaum-Saunders distributions. We derive some properties of the new distribution that include expressions for the ordinary moments and generating and quantile functions. The method of maximum likelihood and a Bayesian approach are adopted to estimate the model parameters; in addition, various simulations are performed for different parameter settings and sample sizes. We propose two new models with a cure rate called the odd Birnbaum-Saunders mixture and odd Birnbaum-Saunders geometric models by assuming that the number of competing causes for the event of interest has a geometric distribution. The applicability of the new models are illustrated by means of ethylene data and melanoma data with cure fraction.

A study on the 3-D CNC cutting planning and simulation by Z-Map model (Z-Map모델을 이용한 3차원 CNC가공계획 및 절삭시뮬레이션에 관한 연구)

  • Song, Soo-Yong;Kim, Seok-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.115-121
    • /
    • 1996
  • Recently, the Z-Map model has been used widely to represent the three dimensional geometric shape and to achieve the cross-section and point evaluation of the shape. In this paper, the CNC cutting planning and simulation modules for product with three dimensional geometric shape are realized based on the Z-Map model. The realized system has the various capabilities related to the automatic generation of tool path for the rough and finish cutting processes, the automatic elimination of overcut, the automatic generation of CNC program for a machining center and the cutting simulation. Especially, the overcut-free tool path is obtained by using the CL Z-Map models which are composed of the offset surfaces of the geometric shape of product.

  • PDF

Geometric Modelling and Coordinate Transformation of Satellite-Based Linear Pushbroom-Type CCD Camera Images (선형 CCD카메라 영상의 기하학적 모델 수립 및 좌표 변환)

  • 신동석;이영란
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.2
    • /
    • pp.85-98
    • /
    • 1997
  • A geometric model of pushbroom-type linear CCD camera images is proposed in this paper. At present, this type of cameras are used for obtaining almost all kinds of high-resolution optical images from satellites. The proposed geometric model includes not only a forward transformation which is much more efficient. An inverse transformation function cannot be derived analytically in a closed form because the focal point of an image varies with time. In this paper, therefore, an iterative algorithm in which a focal point os converged to a given pixel position is proposed. Although the proposed model can be applied to any pushbroom-type linear CCD camera images, the geometric model of the high-resolution multi-spectral camera on-board KITSAT-3 is used in this paper as an example. The flight model of KITSAT-3 is in development currently and it is due to be launched late 1998.

Calaulation of geometric geoidal heights using GPS/leveling data in study area (GPS/leveling 데이터에 의한 기하학적 지오이드고의 산출)

  • 이석배
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.27-31
    • /
    • 2003
  • It can be classified in various methods to get the geoidal heights. It can be achieved geometric geoidal heights if we do GPS surveying in leveling point. The aims of this paper are calculation of geometric geoidal heights using GPS/leveling data in study area and evaluation of the global and local geoid models in and around Korean peninsula. For this study, study area was selected in the leveling line from Kunsan to Chonju city and GPS surveying was accomplished in the leveling line. And, also spherical harmonic analysis was made on the three global geopotential models, OSU91A, EGM96, EGM96m under same condition and KOGD2002, Korean gravimetric geoid model was made in this study The results shows that EGM96m is the best model because the differences between geoidal heights of EGM96m and geometric geoidal heights of GPS/Leveling data appear the smallest value among them.

  • PDF

Measurement Error Modeling for On-Machine Measurement of Sculptured Surfaces

  • Cho, Myeong-Woo;Lee, Se-Hee;Seo, Tae-Il
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.73-80
    • /
    • 2001
  • The objective of this research is to develop a measurement error model for sculptured surface in On-Machine Measurement(OMM) process based on a closed-loop configuration. The geometric error model of each axis of a vertical CNC machining center is derived using a 4$\times$4 homogeneous transformation matrix. The ideal locations of a touch-type probe for the sculptured surface measurement are calculated from the parametric surface representation and X-, Y- directional geometric errors of the machine. Also the actual coordinates of the probe are calculated by considering the pre-travel variation of a probe and Z-directional geometric errors. Then, the step-by-sep measurement error analysis method is suggested based on a closed-loop configuration of the machining center including workpiece and probe errors. The simulation study shows the simplicity and effectiveness of the proposed error modeling strategy.

  • PDF

Characteristics of Geometric Conditions Affecting Freeway Travel Speed : Focused on Speed Limit Change (고속도로 주행속도 변화에 영향을 미치는 도로기하구조 특성분석 : 제한속도 상향전후 비교를 중심으로)

  • Hong, Sungmin;Oh, Cheol
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.83-90
    • /
    • 2014
  • PURPOSES : The purpose of this study is to identify the factors affecting the effectiveness of speed limit change that is defined as the amount of increased travel speed. METHODS : A ordered logit model was adopted to analyze the relationship between the change in travel speed and contributing factors. A stretch of Kyungbu freeway was selected for the analysis because the Korea expressway corporation has raised speed limit from 100km/h to 110km/h since September 1st in 2010. RESULTS : The results showed that geometric design elements, speeding cameras, and section length were identified as factors contributing the effectiveness. Contributing geometric design elements include the number of horizontal curves and vertical curves that do not meet the design requirement with 110km/h speed limit. CONCLUSIONS : The outcome of this study will be used for establishing various traffic operations and control strategies for freeway speed management.