• Title/Summary/Keyword: geometric imperfections

Search Result 88, Processing Time 0.017 seconds

Flexural Strength of cold-formed steel built-up composite beams with rectangular compression flanges

  • Dar, M. Adil;Subramanian, N.;Dar, Dawood A.;Dar, A.R.;Anbarasu, M.;Lim, James B.P.;Mahjoubi, Soroush
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.171-188
    • /
    • 2020
  • The past research on cold-formed steel (CFS) flexural members have proved that rectangular hollow flanged sections perform better than conventional I-sections due to their higher torsional rigidity over the later ones. However, CFS members are vulnerable to local buckling, substantially due to their thin-walled features. The use of packing, such as firmly connected timber planks, to the flanges of conventional CFS lipped I-sections can drastically improve their flexural performance as well as structural efficiency. Whilst several CFS composites have been developed so far, only limited packing materials have been tried. This paper presents a series of tests carried out on different rectangular hollow compression flanged sections with innovative packing materials. Four-point flexural tests were carried out to assess the flexural capacity, failure modes and deformed shapes of the CFS composite beam specimens. The geometric imperfections were measured and reported. The North American Specifications and Indian Standard for cold-formed steel structures were used to compare the design strengths of the experimental specimen. The test results indicate clearly that CFS rectangular 'compression' flanged composite beams perform significantly better than the conventional rectangular hollow flanged CFS sections.

Local buckling of rectangular steel tubes filled with concrete

  • Kanishchev, Ruslan;Kvocak, Vincent
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.201-216
    • /
    • 2019
  • This scientific paper provides a theoretical, numerical and experimental analysis of local stability of axially compressed columns made of thin-walled rectangular concrete-filled steel tubes (CFSTs), with the consideration of initial geometric imperfections. The work presented introduces the theory of elastic critical stresses in local buckling of rectangular wall members under uniform compression. Moreover, a numerical calculation method for the determination of the critical stress coefficient is presented, using a differential equation for a slender wall with a variety of boundary conditions. For comparison of the results of the numerical analysis with those collected by experiments, a new model is created to study the behaviour of the composite members in question by means of the ABAQUS computational-graphical software whose principles are based on the finite element method (FEM). In modelling the analysed members, the actual boundary and loading conditions and real material properties are taken into account, obtained from the experiments and material tests on these members. Finally, the results of experiments on such members are analysed and then compared with the numerical values. In conclusion, several recommendations for the design of axially compressed composite columns made of rectangular concrete-filled thin-walled steel tubes are suggested as a result of this comparison.

Cyclic behavior of jumbo reduced beam section connections with heavy sections: Numerical investigation

  • Qi, Liangjie;Liu, Mengda;Shen, Zhangpeng;Liu, Hang
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.183-196
    • /
    • 2022
  • Reduced beam section (RBS) moment connections used in special moment resisting frames are currently limited to beam sections that are not larger than nominal depths of 920 mm, weight of 447 kg/m and flange thickness of 44 mm. Due to the higher demand for structural components with jumbo sections, which can potentially be applied in the transfer girders in long-span building structures, the newly available steel heavy members are promising. To address this issue, advanced numerical models are developed to fully evaluate the distribution of stresses and concentrations of plastic strains for such jumbo RBS connections. This paper first presents a brief overview of an experimental study on four specimens with large beam and column sections. Then, a numerical model that includes initial imperfections, residual stresses, geometric nonlinearity, and explicitly modeled welds is presented. The model is used to further explore the behavior of the test specimens, including distribution of stresses, distribution of plastic strains, stress triaxiality and potential for fracture. The results reveal that the stresses are highly non-uniform across the beam flange and, similarly, the plastic strains concentrate at the extreme fiber of the bottom flange. However, neither of these phenomena, which are primarily a function of beam flange thickness, is reflected in current design procedures.

Finite element modelling for the static bending response of rotating FG-GPLRC beams with geometrical imperfections in thermal mediums

  • Bui Manh Cuong;Abdelouahed Tounsi;Do Van Thom;Nguyen Thi Hai Van;Phung Van Minh
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.91-102
    • /
    • 2024
  • Beam-shaped components commonly rotate along a fixed axis when massive mechanical structures like rotors, jet engine blades, motor turbines, and rotating railway crossings perform their functions. For these structures to be useful in real life, their mechanical behavior is essential. Therefore, this is the first article to use the modified shear deformation theory type hyperbolic sine functions theory and the FEM to study the static bending response of rotating functionally graded GPL-reinforced composite (FG-GPLRC) beams with initial geometrical deficiencies in thermal media. Graphene platelets (GPLs) in three different configurations are woven into the beam's composition to increase its strength. By comparing the numerical results with those of previously published studies, we can assess the robustness of the theory and mechanical model employed in this study. Parameter studies are performed to determine the effect of various geometric and physical variables, such as rotation speed and temperature, on the bending reactions of structures.

Buckling Analysis of Circular Cylinders with Initial Imperfection Subjected to Hydrostatic Pressure (수압을 받는 원통형 실린더의 초기부정을 고려한 좌굴해석)

  • Nho, In Sik;Ryu, Jae Won;Lim, Seung Jae;Cho, Sang Rai;Cho, Yun Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.3
    • /
    • pp.267-273
    • /
    • 2017
  • Pressure hulls of submerged structures are generally designed as circular cylinders, spheres or cones with form of axisymmetric shell of revolution to withstand the high external pressure of deep ocean. The compressive buckling (implosion) due to hydrostatic pressure is the main concern of structural design of pressure hull and many design codes are provided for it. It is well-known that the buckling behavior of thin shell of revolution is very sensitive to the initial geometric imperfections introduced during the construction process of cutting and welding. Hence, the theoretical solutions for thin shells with perfect geometry often provide much higher buckling pressures than the measured data in tests or real structures and more precise structural analysis techniques are prerequisite for the safe design of pressure hulls. So this paper dealt with various buckling pressure estimation techniques for unstiffened circular cylinder under hydrostatic pressure conditions. The empirical design equations, eigenvalue analysis technique for critical pressure and collapse behaviors of thin cylindrical shells by the incremental nonlinear FE analysis were applied. Finally all the obtained results were compared with those of the pressure chamber test for the aluminium models. The pros and cons of each techniques were discussed and the most rational approach for the implosion of circular cylinder was recommended.

Cross-sectional analysis of arbitrary sections allowing for residual stresses

  • Li, Tian-Ji;Liu, Si-Wei;Chan, Siu-Lai
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.985-1000
    • /
    • 2015
  • The method of cross-section analysis for different sections in a structural frame has been widely investigated since the 1960s for determination of sectional capacities of beam-columns. Many hand-calculated equations and design graphs were proposed for the specific shape and type of sections in pre-computer age decades ago. In design of many practical sections, these equations may be uneconomical and inapplicable for sections with irregular shapes, leading to the high construction cost or inadequate safety. This paper not only proposes a versatile numerical procedure for sectional analysis of beam-columns, but also suggests a method to account for residual stress and geometric imperfections separately and the approach is applied to design of high strength steels requiring axial force-moment interaction for advanced analysis or direct analysis. A cross-section analysis technique that provides interaction curves of arbitrary welded sections with consideration of the effects of residual stress by meshing the entire section into small triangular fibers is formulated. In this study, two doubly symmetric sections (box-section and H-section) fabricated by high-strength steel is utilized to validate the accuracy and efficiency of the proposed method against a hand-calculation procedure. The effects of residual stress are mostly not considered explicitly in previous works and they are considered in an explicit manner in this paper which further discusses the basis of the yield surface theory for design of structures made of high strength steels.

A study on the Thermal Buckling and Postbuckling of a Laminated Composite Beam with Embedded SMA Actuators (형상기억합금 선을 삽입한 복합적층 보의 열좌굴 및 좌굴후 거동에 관한 연구)

  • Choi, S.;Lee, J.J.;Lee, D.C.
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.55-65
    • /
    • 1999
  • In this paper, the thermal buckling and postbuckling behaviour of composite beam with embedded shape memory alloy (SMA) wires are investigated experimentally and analytically. The results of thermal buckling tests on uniformly heated, clamped, composite beam embedded with SMA wire actuators are presented and discussed in consideration of geometric imperfections, slenderness ratio of beam and embedding position of SMA wire actuators. The shape recovery force can reduce the thermal expansion of composite laminated beam, which result in increment of the critical buckling temperature and reduction of the lateral deflection of postbuckling behaviours. It is presented quantitatively on the temperature-load-deflection behaviour records how the shape recovery force affects the thermal buckling. The cross tangential method is suggested to calculate the critical buckling temperature on the temperature-deflection plot. Based on the experimental analysis, the new formula is also proposed to describe the critical buckling temperature of a laminated composite beam with embedded SMA wire actuators.

  • PDF

Rock bridge fracture model and stability analysis of surrounding rock in underground cavern group

  • Yu, Song;Zhu, Wei-Shen;Yang, Wei-Min;Zhang, Dun-Fu;Ma, Qing-Song
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.481-495
    • /
    • 2015
  • Many hydropower stations in southwest China are located in regions of brittle rock mass with high geo-stresses. Under these conditions deep fractured zones often occur in the sidewalls of the underground caverns of a power station. The theory and methods of fracture and damage mechanics are therefore adopted to study the phenomena. First a flexibility matrix is developed to describe initial geometric imperfections of a jointed rock mass. This model takes into account the area and orientation of the fractured surfaces of multiple joint sets, as well as spacing and density of joints. Using the assumption of the equivalent strain principle, a damage constitutive model is established based on the brittle fracture criterion. In addition the theory of fracture mechanics is applied to analyze the occurrence of secondary cracks during a cavern excavation. The failure criterion, for rock bridge coalescence and the damage evolution equation, has been derived and a new sub-program integrated into the FLAC-3D software. The model has then been applied to the stability analysis of an underground cavern group of a hydropower station in Sichuan province, China. The results of this method are compared with those obtained by using a conventional elasto-plastic model and splitting depth calculated by the splitting failure criterion proposed in a previous study. The results are also compared with the depth of the relaxation and fracture zone in the surrounding rock measured by field monitoring. The distribution of the splitting zone obtained both by the proposed model and by the field monitoring measurements are consistent to the validity of the theory developed herein.

Nonlinear stability analysis of a radially retractable hybrid grid shell in the closed position

  • Cai, Jianguo;Zhang, Qian;Jiang, Youbao;Xu, Yixiang;Feng, Jian;Deng, Xiaowei
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.287-296
    • /
    • 2017
  • The buckling capacity of a radially retractable hybrid grid shell in the closed position was investigated in this paper. The geometrically non-linear elastic buckling and elasto-plastic buckling analyses of the hybrid structure were carried out. A parametric study was done to investigate the effects rise-to-span ratio, beam section, area and pre-stress of cables, on the failure load. Also, the influence of the shape and scale of imperfections on the elasto-plastic buckling loads was discussed. The results show that the critical buckling load is reduced by taking account of material non-linearity. Furthermore, increasing the rise-to-span ratio or the cross-section area of steel beams notably improves the stability of the structure. However, the cross section area and pre-stress of cables pose negligible effect on the structural stability. It can also be found that the hybrid structure is highly sensitive to geometric imperfection which will considerably reduce the failure load. The proper shape and scale of the imperfection are also important.

Confinement models for high strength short square and rectangular concrete-filled steel tubular columns

  • Aslani, Farhad;Uy, Brian;Wang, Ziwen;Patel, Vipul
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.937-974
    • /
    • 2016
  • While extensive efforts have been made in the past to develop finite element models (FEMs) for concrete-filled steel tubular columns (CFSTCs), these models may not be suitable to be used in some cases, especially in view of the utilisation of high strength steel and high strength concrete. A method is presented herein to predict the complete stress-strain curve of concrete subjected to tri-axial compressive stresses caused by axial load coupled with lateral pressure due to the confinement action in square and rectangular CFSTCs with normal and high strength materials. To evaluate the lateral pressure exerted on the concrete in square and rectangular shaped columns, an accurately developed FEM which incorporates the effects of initial local imperfections and residual stresses using the commercial program ABAQUS is adopted. Subsequently, an extensive parametric study is conducted herein to propose an empirical equation for the maximum average lateral pressure, which depends on the material and geometric properties of the columns. The analysis parameters include the concrete compressive strength ($f^{\prime}_c=20-110N/mm^2$), steel yield strength ($f_y=220-850N/mm^2$), width-to-thickness (B/t) ratios in the range of 15-52, as well as the length-to-width (L/B) ratios in the range of 2-4. The predictions of the behaviour, ultimate axial strengths, and failure modes are compared with the available experimental results to verify the accuracy of the models developed. Furthermore, a design model is proposed for short square and rectangular CFSTCs. Additionally, comparisons with the prediction of axial load capacity by using the proposed design model, Australian Standard and Eurocode 4 code provisions for box composite columns are carried out.