• 제목/요약/키워드: geometric factor

검색결과 420건 처리시간 0.021초

A NUMERICAL METHOD TO ANALYZE GEOMETRIC FACTORS OF A SPACE PARTICLE DETECTOR RELATIVE TO OMNIDIRECTIONAL PROTON AND ELECTRON FLUXES

  • Pak, Sungmin;Shin, Yuchul;Woo, Ju;Seon, Jongho
    • 천문학회지
    • /
    • 제51권4호
    • /
    • pp.111-117
    • /
    • 2018
  • A numerical method is proposed to calculate the response of detectors measuring particle energies from incident isotropic fluxes of electrons and positive ions. The isotropic flux is generated by injecting particles moving radially inward on a hypothetical, spherical surface encompassing the detectors. A geometric projection of the field-of-view from the detectors onto the spherical surface allows for the identification of initial positions and momenta corresponding to the clear field-of-view of the detectors. The contamination of detector responses by particles penetrating through, or scattering off, the structure is also similarly identified by tracing the initial positions and momenta of the detected particles. The relative contribution from the contaminating particles is calculated using GEANT4 to obtain the geometric factor of the instrument as a function of the energy. This calculation clearly shows that the geometric factor is a strong function of incident particle energies. The current investigation provides a simple and decisive method to analyze the instrument geometric factor, which is a complicated function of contributions from the anticipated field-of-view particles, together with penetrating or scattered particles.

토크비 개선을 위한 자속 장벽형 회전자 구조 동기 릴릭턴스 전동기의 설계 (Design of Flux Barrier type Synchronous Reluctance Motor to improve Saliency Ratio)

  • 장석명;박병임;이성호;이중호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.660-662
    • /
    • 2000
  • It is demonstrated that the torque performance of the flux barrier type synchronous reluctance motor(SynRM) can be improved in terms of geometric parameters. Torque ana power factor are related to the difference of inductances and the saliency ratio. And these inductance characteristics are determined by the geometric parameters of rotor: the number of layers. the width of iron to the width of flux barrier($K_w$). slot number and shape, airgap, bridge, etc. The relationship between geometric parameters. especially, $K_w$ and motor performance will be studied. This paper shows that torque and power factor are improved through redesign with considering geometric parameters. Performance comparisons of proto type SynRM and improved SynRM are given by FEA(Finite Element Analysis).

  • PDF

로보트를 이용한 힘제어에서의 기하학적 안정성에 관한 해석 (Analysis of Geometric Stability in Robot Force Control)

  • 이병주
    • 대한기계학회논문집
    • /
    • 제18권9호
    • /
    • pp.2284-2296
    • /
    • 1994
  • Force control of robotic mechanisms continues to be a challenging area. Previous implementation have seldom produced satisfactory results, and researchers in the past have experienced significant instability problems associated with their force controllers. In this study, a new stability factor in force control will be pointed out. When a manipulator is constrained to an environment(force-controlled), geometric instability due to the relationship between the manipulator configuration and the force-controlled direction is shown to be a significant factor in overall system stability. This exploratory study points out a rather intuitive, geometrically based stability factor in terms of an effective system stiffness and analyzes the phenomenon both analytically and graphically. Also, a stiffness control algorithm using the kinematic redundancy of a kinematically redundant manipulator is proposed to improve the overall stability in force control.

교육과정에 따른 중학교 작도 과제의 변화 연구 (A study on the geometric construction task of middle school according to the mathematics curriculums)

  • 서보억
    • East Asian mathematical journal
    • /
    • 제36권4호
    • /
    • pp.493-513
    • /
    • 2020
  • The reason for this study is that the learning content of geometric construction in school mathematics is very insufficient. Geometric construction not only enables in-depth understanding of shapes, but also improves deductive proof skills. In school mathematics education, geometric construction is a very important learning factor, and educational significance is very high in that it can develop reasoning skills essential to the future society. Nevertheless, the reduction of geometric construction learning content in Korean curriculum and mathematics textbooks is against the times. Therefore, the purpose of this study is to analyze the transition of geometric construction learning contents in middle school mathematics curriculum and mathematics textbooks. In order to achieve the purpose of this study, the following studies were conducted. First, we analyze the characteristics of geometric construction according to changes in curriculum and textbooks. Second, we develop a framework for analyzing geometric construction tasks. Third, we explore geometric construction tasks according to the developed framework. Through this, it is expected to provide significant implications for the geometric areas of the new middle school curriculum that will be developed in the future.

반도체에서 시료의 기하학적인 모양에 의한 MR(magnetoresistance)의 변화

  • 이진서;홍진기;이긍원;안세영;김진상;이병찬
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2002년도 동계연구발표회 논문개요집
    • /
    • pp.80-81
    • /
    • 2002
  • MR(magnetoresistance)은 물질의 저항이 자기장에 의해 변하는 물리적인 변화(physical MR)와 기하학적인 요소, 즉 sample의 모양과 contact의 크기 등에 의한 변화(geometric MR)의 합으로 나타낸다.[1] Physical MR은 자기장에 따른 비저항 또는 이동도(mobility)의 변화로 나타낼 수 있고, geometric MR은 로렌츠 힘에 의해 전류의 흐르는 방향이 변하면서 일어난다. 본 연구에서는 physical MR이 거의 없는 반도체(InAs)와 비교적 큰 physical MR을 가지는 반도체(HgCdTe)의 geometric factor를 고려한 MR의 향상에 대하여 연구하였다. (중략)

  • PDF

Geometric interpretation of time-temperature superposition

  • Cho, Kwang-Soo
    • Korea-Australia Rheology Journal
    • /
    • 제21권1호
    • /
    • pp.13-16
    • /
    • 2009
  • We investigate time-temperature superposition from the viewpoint of geometry. The arc length of viscoelastic plots provides powerful resolution for check of the validity of time-temperature superposition. We also suggest a new algorithm for determination of shift factor which is base on the minimization of the total arc length and does not assume any functional form of viscoelastic function.

초기 결함 조건 모델에 따른 복합재 원통 구조의 좌굴 Knockdown factor 도출 (Derivation of Knockdown Factors for Composite Cylinders with Various Initial Imperfection Models)

  • 김도영;심창훈;박재상;유준태;윤영하;이기주
    • Composites Research
    • /
    • 제34권5호
    • /
    • pp.283-289
    • /
    • 2021
  • 본 연구에서는 압축력을 받는 얇은 복합재 원통 구조에 대하여 기하학적 혹은 하중에 대한 초기 결함 모델을 이용하여 수치해석적으로 좌굴 Knockdown factor를 새롭게 도출하였다. 전역 좌굴이 발생하기 이전에 타원형상의 변형 형상을 갖는 복합재 원통 구조를 사용하였다. 복합재 원통 구조의 기하학적 초기 결함만 고려하기 위하여 Single Perturbation Load Approach를 이용하였으며, 기하학적 초기 결함과 더불어 하중 불균일을 함께 구현하기 위하여 Single Boundary Perturbation Approach를 사용하였다. 기하학적 초기 결함 모델의 좌굴 Knockdown factor는 NASA의 기존의 좌굴 Knockdown factor보다 약 84% 높게 도출되었으며, 좌굴 시험에 비하여서는 약 9% 낮게 도출되었다. 기하학적 초기 결함과 하중 불균일을 함께 고려하는 모델의 좌굴 Knockdown factor는 NASA의 좌굴 Knockdown factor에 비하여서는 약 75% 높게, 그리고 좌굴 시험보다 약 14% 낮게 계산되었다. 따라서, 본 연구의 좌굴 설계 기준은 고려된 초기 결함 모델과 상관없이 기존의 좌굴 설계 기준에 비하여 경량 설계의 제공이 가능함과 동시에 좌굴 시험 대비 적절히 보수적인 설계 기준을 제공할 수 있음을 확인하였다.

불완전 디버깅 환경에서의 이항 반응 계수 초기하분포 소프트웨어 신뢰성 성장 모델 (The Binomial Sensitivity Factor Hyper-Geometric Distribution Software Reliability Growth Model for Imperfect Debugging Environment)

  • 김성희;박중양;박재흥
    • 한국정보처리학회논문지
    • /
    • 제7권4호
    • /
    • pp.1103-1111
    • /
    • 2000
  • The hyper-geometric distribution software reliability growth model (HGDM) usually assumes that all the software faults detected are perfectly removed without introducing new faults. However, since new faults can be introduced during the test-and-debug phase, the perfect debugging assumption should be relaxed. In this context, Hou, Kuo and Chang [7] developed a modified HGDM for imperfect debugging environment, assuming tat the learning factor is constant. In this paper we extend the existing imperfect debugging HGDM for tow respects: introduction of random sensitivity factor and allowance of variable learning factor. Then the statistical characteristics of he suggested model are studied and its applications to two real data sets are demonstrated.

  • PDF

퍼지 알고리즘을 이용한 평면연삭의 형상정도 향상에 관한 연구 (A Sutdy on Improvement of Geomeric Accuracy by using Fuzzy Algorithm in Surface Grinding)

  • 천우진;김남경;하만경;송지복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.149-154
    • /
    • 1993
  • In heavy grinding that is on of the high efficient grinding method, meaningful deformation is generated by high temperature. So, after machining, geomeric error generated od the workpiece. The most important factor on the geometric error is temperature difference between upper layer and lower layer (T $_{d}$) . Relations between Td and grinding condition and maximum geometric error and grinding condition are obtained by experiment. This relations are used in fuzzy algorithm for improvement geometric accuracy. The main results are follows : (1) The linear relation between maximum geometric error and grinding condition is ovtained by experiment. (2) The linear relation between maximum temperature difference between upper layer and lower layer and grinding condition is ovtained by experiment. (3) Control peth of wheel for improvement geometric accuracy is obtained by using the fuzzy algorithm.m.

  • PDF

가공경로가 밀링가공면의 기하학적 특성에 미치는 영향 (Effects of the Tool Path on the Geometric Characteristics of Milled Surface)

  • 박문진;김강
    • 한국정밀공학회지
    • /
    • 제15권6호
    • /
    • pp.58-63
    • /
    • 1998
  • There are lots of factors that are related to the geometric characteristics of machined surface. Among them, the tool path and milling mode (up cut milling or down cut milling) are the easiest controllable machining conditions. Thus, the first objective of this research is to study the effects of them on the milled surface that is generated by an end milling tool. To get precision parts, not only the machining process but also the measurement of geometric tolerance is important. But, this measurement requires a lot of time, because the infinite surface points must be measured in the ideal case. So, the second objective is to propose a simple flatness measurement method that can be available instead of the 3-D geometric tolerance measurement method, using a scale factor and characterized points. Finally, it is also shown that the possibility of flatness improvement by shifting the consecutive fine cutting tool path as compared with the last rough cutting tool path.

  • PDF