• Title/Summary/Keyword: geometric effect

Search Result 1,021, Processing Time 0.025 seconds

A Study on the Dynamic Characteristics of Tension Structures according to Initial Tension Forces and Equilibrium Shape (초기인장력과 평형형상을 고려한 인장구조물의 동적 특성에 대한 연구)

  • Chang, Dong Il;Kim, Hak Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.73-83
    • /
    • 1998
  • Considering dynamic behaviors according to initial tension forces, geometric nonlinearity and the effect of higher eigen modes to participate in dynamic behaviors increase as initial tension forces decrease, and from phase portrait we can realize that period attractors are produced in many area with complexity. If initial tension forxes increase, difference between linear and nonlinear solutions will decrease and the first eigen mode dominate the dynamic behaviors and observing phase portrait, period attractors appear in certain area regularly. These results may offer meaningful informations to nonlinear dynamic analysis using modal reduction methods such as Lanczos modal analysis. And actually nonlinear dynamic analysis needs very large computational efforts. So, if we determine the number of eigen modes to take part in modal analysis corresponding to initial tension forces we will get more accurate data close to exact nonlinear dynamic solutions.

  • PDF

A Study of Accident Models for Highway Interchange Ramps (고속도로 연결로의 교통사고 추정모형 연구)

  • Roh, Chang-Gyun;Park, Chong-Seo;Son, Bong-Soo
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.29-40
    • /
    • 2008
  • Although a good understanding of the relationship between highway traffic accidents and highway geometric features is fundamental in highway design and safety, the relationship is not well understood quantitatively. The overall goal of this paper is to formulate a reliable statistical model fitting to historical highway accident data. The model can be used to estimate the effect of road design elements on safety for the practical purposes of highway design applications. En route to achieving this goal, a number of specific research objectives were accomplished: investigate the major design elements affecting highway safety; review the existing modeling approaches in order to assess the relationship between safety and highway design features; and formulate a statistical model fitting to the accident data in order to estimate the interchange ramp junction accident frequency of rural highways.

Development of Tobacco Ripeness Grading Meter Using the Color Sensor (칼라센서를 이용한 담배 완숙도의 식별장치 개발)

  • 이대원;이용국
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.16 no.1
    • /
    • pp.26-33
    • /
    • 1994
  • A tobacco ripeness grading meter was designed and constructed using the color sensor, its performance was evaluated. A degree of ripeness grading of a leaf is very closely related to the measured tobacco leaf color. Measuring the small amount of the reflectance precisely depends on the apparatus including color sensor, light source, detector sensitivity, and geometric characteristics of appratus. To analyze and minimize the variational effects, experiments to select the proper condition were performed. Because of the combined effect mentioned above, the system has some variation on its response. Basis on the results of the experiments, prototype was developed and interfaced to a computer system. The main components of prototype included a tungsten lamp as a light source, Amorphous full color sensor with three filters, regulated D.C. power supply, OP - AMP(741 TC) for amplification, AR - B3001 board for interfacing to a computer with analog to digital conversion, and a compatible IBM PC XT computer. The experimental results of the developed ripeness tobacco leaf measurement system are summarized as following: [1] The output readings of ripeness grade meter for tobacco leaf, which is based on harvesting time, showed the apparent difference in variety of different quality. It was considered suitable that three filters(red, green, blue) in Amorphous full color sensor could be used in four different ripeness degree measurement of tobacco leaf. [2] The output readings of ripeness grade meter for tobacco leaf, which is based on government procurement, showed apparent difference in variety of different quality. Tobacco leaf varieties to stalk position are divided into tips, leaf, cutters, and primings, It is considered suitable that only red filter in the sensor could be used to classify the grade of tobacco leaf within the same kind tobacco stalk. However, the ripeness grade meter was not adequate to classify all the tobacco grades in the four different tobacco leaves.

  • PDF

An Experimental Study on Evaperation Heat Transfer and Pressure Drop in Plated cleat Exchangers with Different Chevron Angles (판형열교환기의 세브론각에 따른 증발 열전달특성 및 압력강하에 대한 실험적 연구)

  • Kim, Yun-Ho;Lee, Gyu-Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.269-277
    • /
    • 2002
  • Experiments on the evaporation heat transfer and pressure drop in the brazed type plate heat exchangers were performed using refrigerants R410A and R22. To investigate the geometric effect, plate heat exchangers with the same pitch and height but different 45$^{\circ}$, 35$^{\circ}$and 20$^{\circ}$chevron angles are used. Tests were conducted fur the ranges of the mass flux of refrigerant from 13 kg/m$^2$s to 34 kg/m$^2$s, the evaporation temperatures of 15$^{\circ}C$, 1$0^{\circ}C$ and 5$^{\circ}C$, vapor quality from 0.15 to 0.95 and the heat flux from 2.5 kW/m$^2$to 8.5 kW/m$^2$. The evaporation heat transfer coefficients and pressure drops were measured. Most of flow patterns are in the chum flow regime and become close to the annular flow for increasing the mass flux and the vapor quality. The heat transfer coefficient increases with increasing the evaporation temperature at a given mass flux in all plate heat exchangers. Also, the pressure drop increases with increasing the mass flux and the quality and decreasing the evaporation temperature and the chevron angle.

Evaluation of the Application of worker-DNELs under REACH Guidance as Provisional Occupational Exposure Limits in the Workplace (작업자 무영향도출수준(worker-DNEL)의 사업장 적용을 위한 평가 연구)

  • Yoon, Young Hee;Lee, Seok Won;Jung, Hyun Hee;Kim, Kwan Sick
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.1
    • /
    • pp.27-34
    • /
    • 2013
  • Objectives: The purpose of this study is to calculate the worker-DNEL (Derived No Effect Level) values using the REACH guidance and compare the calculated DNELs with existing Korea occupational exposure limits (KOELs) for evaluation of the applicability of the worker-DNELs as provisional occupational exposure limits for chemicals that are not established KOELs in the workplace. Methods: The worker-DNELs for 46 chemicals among 113 hazardous substance requiring management were calculated using the REACH guidance, and a paired t-test was performed to see if there is any statistical difference between two lists (worker-DNELs vs KOELs). The ratios of KOELs over worker-DNELs were also calculated to compare the overall levels of two lists using the geometric means method. Results: The calculated worker-DNELs for 46 chemicals ranged from 0.001 to $329mg/m^3$ (GM= 6.9, GSD = 10.8), and appeared to be a significant difference between the worker-DNELs and the KOELs (p < 0.01). In addition, the ratios of KOELs over worker-DNELs ranged from 0.3 to 394 times (GM = 10.2, GSD = 3.9), indicating that the worker-DNELs were, on average, 27 times lower than the KOELs. Conclusions: Therefore, the study results show that the calculated worker-DNELs can be applied and used as provisional occupational exposure limits in the workplace in order to reduce worker exposures to chemicals and health risks, and manage potential worker exposures based on the precautionary principle through comprehensive chemical risk assessment.

Effects of Didecyldimethylammonium Chloride on Sprague-Dawley Rats after Two Weeks of Inhalation Exposure

  • Lim, Cheol-Hong;Chung, Yong-Hyun
    • Toxicological Research
    • /
    • v.30 no.3
    • /
    • pp.205-210
    • /
    • 2014
  • Didecyldimethylammonium chloride (DDAC) is used for various purposes, such as a fungicide for coolants, an antiseptic for wood, and disinfectant for cleaning. Despite the increasing likelihood of DDAC inhalation, available data on its toxicity from inhalation are scarce. Therefore, this study was aimed at confirming the toxicity of DDAC after inhalation exposure for 2 wk. Male Sprague-Dawley rats were exposed to approximately $0.15mg/m^3$, $0.6mg/m^3$, and $3.6mg/m^3$ DDAC aerosols in whole-body exposure chambers. After DDAC exposure for 2 wk, effects of DDAC on body weight, blood, bronchoalveolar lavage (BAL), and the lungs were verified. The mass median aerodynamic diameter of DDAC aerosols was $1.86{\mu}m$ and the geometric standard deviation was 2.75. The concentrations of DDAC aerosols for the low, medium, and high groups were $0.15{\pm}0.15mg/m^3$, $0.58{\pm}0.40mg/m^3$, and $3.63{\pm}1.56mg/m^3$, respectively. Body weight gain was significantly influenced by DDAC exposure. In the high group, a body weight decrease of 2.6 g was observed, whereas a 25.8 g increase was observed in the normal control group after the first 3 days. The low and medium groups showed 23.3 g and 20.4 g increases, respectively, after the first 3 days. Decreases in body weight were recovered during the next 4 days. In contrast, no changes were noted in hematological and blood biochemistry parameters after DDAC exposure. Furthermore, only mild effects were observed on bronchoalveolar cell differentiation counts and cell damage parameters in the BAL fluids of the medium and high groups. Although inflammatory cell infiltration and interstitial pneumonia were partially observed, fibrosis was not found in the lungs of the medium and high groups. In conclusion, body weight gain and the lungs were mainly affected by DDAC exposure. The no-observed-adverse-effect level (NOAEL) for DDAC was determined as $0.15mg/m^3$.

A Statistical Analysis of JERS L-band SAR Backscatter and Coherence Data for Forest Type Discrimination

  • Zhu Cheng;Myeong Soo-Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.1
    • /
    • pp.25-40
    • /
    • 2006
  • Synthetic aperture radar (SAR) from satellites provides the opportunity to regularly incorporate microwave information into forest classification. Radar backscatter can improve classification accuracy, and SAR interferometry could provide improved thematic information through the use of coherence. This research examined the potential of using multi-temporal JERS-l SAR (L band) backscatter information and interferometry in distinguishing forest classes of mountainous areas in the Northeastern U.S. for future forest mapping and monitoring. Raw image data from a pair of images were processed to produce coherence and backscatter data. To improve the geometric characteristics of both the coherence and the backscatter images, this study used the interferometric techniques. It was necessary to radiometrically correct radar backscatter to account for the effect of topography. This study developed a simplified method of radiometric correction for SAR imagery over the hilly terrain, and compared the forest-type discriminatory powers of the radar backscatter, the multi-temporal backscatter, the coherence, and the backscatter combined with the coherence. Statistical analysis showed that the method of radiometric correction has a substantial potential in separating forest types, and the coherence produced from an interferometric pair of images also showed a potential for distinguishing forest classes even though heavily forested conditions and long time separation of the images had limitations in the ability to get a high quality coherence. The method of combining the backscatter images from two different dates and the coherence in a multivariate approach in identifying forest types showed some potential. However, multi-temporal analysis of the backscatter was inconclusive because leaves were not the primary scatterers of a forest canopy at the L-band wavelengths. Further research in forest classification is suggested using diverse band width SAR imagery and fusing with other imagery source.

A Study on the Asphalt Road Boundary Extraction Using Shadow Effect Removal (그림자영향 소거를 통한 아스팔트 도로 경계추출에 관한 연구)

  • Yun Kong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.123-129
    • /
    • 2006
  • High-resolution aerial color image offers great possibilities for geometric and semantic information for spatial data generation. However, shadow casts by buildings and trees in high-density urban areas obscure much of the information in the image giving rise to potentially inaccurate classification and inexact feature extraction. Though many researches have been implemented for solving shadow casts, few studies have been carried out about the extraction of features hindered by shadows from aerial color images in urban areas. This paper presents a asphalt road boundary extraction technique that combines information from aerial color image and LIDAR (LIght Detection And Ranging) data. The following steps have been performed to remove shadow effects and to extract road boundary from the image. First, the shadow regions of the aerial color image are precisely located using LEAR DSM (Digital Surface Model) and solar positions. Second, shadow regions assumed as road are corrected by shadow path reconstruction algorithms. After that, asphalt road boundary extraction is implemented by segmentation and edge detection. Finally, asphalt road boundary lines are extracted as vector data by vectorization technique. The experimental results showed that this approach was effective and great potential advantages.

Testing, simulation and design of back-to-back built-up cold-formed steel unequal angle sections under axial compression

  • Ananthi, G. Beulah Gnana;Roy, Krishanu;Chen, Boshan;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.595-614
    • /
    • 2019
  • In cold-formed steel (CFS) structures, such as trusses, transmission towers and portal frames, the use of back-to-back built-up CFS unequal angle sections are becoming increasingly popular. In such an arrangement, intermediate welds or screw fasteners are required at discrete points along the length, preventing the angle sections from buckling independently. Limited research is available in the literature on axial strength of back-to-back built-up CFS unequal angle sections. The issue is addressed herein. This paper presents an experimental investigation on both the welded and screw fastened back-to-back built-up CFS unequal angle sections under axial compression. The load-axial shortening and the load verses lateral displacement behaviour along with the deformed shapes at failure are reported. A nonlinear finite element (FE) model was then developed, which includes material non-linearity, geometric imperfections and modelling of intermediate fasteners. The FE model was validated against the experimental test results, which showed good agreement, both in terms of failure loads and deformed shapes at failure. The validated FE model was then used for the purpose of a parametric study to investigate the effect of different thicknesses, lengths and, yield stresses of steel on axial strength of back-to-back built-up CFS unequal angle sections. Five different thicknesses and seven different lengths (stub to slender columns) with two different yield stresses were investigated in the parametric study. Axial strengths obtained from the experimental tests and FE analyses were used to assess the performance of the current design guidelines as per the Direct Strength Method (DSM); obtained comparisons show that the current DSM is conservative by only 7% on average, while predicting the axial strengths of back-to-back built-up CFS unequal angle sections.

Numerical Analysis Study for Behavioral Characteristics Analysis of Jeju Natural Caves (Jaeamcheon Lava Tube) That Intersect with Roads (도로와 교차하는 제주천연동굴(재암천굴)의 거동특성 분석을 위한 수치해석적 연구)

  • Lee, Jong-Hyun;Jin, Hyun-Sik;An, Joon-Sang;Baek, Yong
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.367-380
    • /
    • 2021
  • This study evaluated the stability through a three-dimensional numerical analysis method when a natural cave exists under a road in operation in Jeju Island. In order to confirm the geometric and geotechnical characteristics of the Jeju natural cave passing under the road, existing geotechnical survey reports were collected, and were studied the characteristics. In order to evaluate the effect of vehicle vibration loading on the natural cave in Jeju, three-dimensional numerical analysis was performed considering discontinuities. Through this, the stability of roads and caves with respect to vehicle speed and the depth of cover (distance from the road to the top of the natural cave) was evaluated and countermeasures were suggested. In order to secure the long-term stability of the Jeju natural cave that penetrates the lower part of the road, it was evaluated that systematic management such as long-term measurement management, reinforcement measures, and emergency measures would be necessary depending on the depth of the cover.