• Title/Summary/Keyword: geometric distance

Search Result 398, Processing Time 0.028 seconds

Polar-Natural Distance and Curve Reconstruction

  • Kim, Hyoung-Seok;Kim, Ho-Sook
    • International Journal of Contents
    • /
    • v.11 no.2
    • /
    • pp.9-14
    • /
    • 2015
  • We propose a new distance measure between 2-dimensional points to provide a total order for an entire point set and to reflect the correct geometric meaning of the naturalness of the point ordering. In general, there is no total order for 2-dimensional point sets, so curve reconstruction algorithms do not solve the self-intersection problem because the distance used in the previous methods is the Euclidean distance. A natural distance based on Brownian motion was previously proposed to solve the self-intersection problem. However, the distance reflects the wrong geometric meaning of the naturalness. In this paper, we correct the disadvantage of the natural distance by introducing a polar-natural distance, and we also propose a new curve reconstruction algorithm that is based on the polar-natural distance. Our experiments show that the new distance adequately reflects the correct geometric meaning, so non-simple curve reconstruction can be solved.

Optimal design of a micro evaporator to maximize heat transfer coefficient (열전달 계수 최대화를 위한 마이크로 증발기의 최적 설계)

  • Sung, Tai-Jong;Oh, Dae-Sik;Seo, Tae-Won;Kim, Jong-Won
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2097-2101
    • /
    • 2007
  • This paper presents an optimal design of a micro evaporator which maximizes the heat transfer coefficient. Number of gaps, spanwise distance and streamwise distance are selected as the geometric design parameters. Mass flow rate of the refrigerant is selected as the non-geometric design parameter. Temperature at the surface of the heater is measured to valuate the heat transfer coefficient. Nine experiments are conducted using $L_9(3^4)$ orthogonal array. Maximum heat transfer coefficient is 640 W/$m^2K$ at the parameters of 2 gaps, 0.2 mm spanwise distance, 1.0 mm streamwise distance and 0.72 g/s mass flow rate. Among the 3 geometric parameters, the spanwise distance is the most sensitive parameter influencing the heat transfer coefficient. We conduct a second stage of experiment to increase the heat transfer coefficient by reselecting the mass flow rate. We concluded that 0.87 g/s is the optimized flow rate for an active micro cooler resulting in a heat transfer coefficient of 651 W/$m^2K$.

  • PDF

Obstacle-Free Optimal Motions of a Manipulator Arm Using Penetration Growth Distance (침투성장거리를 이용한 로봇팔의 장애물회피 최적운동)

  • Park, Jong-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.116-126
    • /
    • 2001
  • This paper suggests a numerical method to find optimal geometric path and minimum-time motion for a spatial 6-link manipulator arm (PUMA 560 type). To find a minimum-time motion, the optimal geometric paths minimizing 2 different dynamic performance indices are searched first, and the minimum-time motions are searched on these optimal paths. In the algorithm to find optimal geometric paths, the objective functions (performance indices) are selected to minimize joint velocities, actuator forces or the combinations of them as well as to avoid one static obstacle. In the minimum-time algorithm the traveling time is expressed by the power series including 21 terms. The coefficients of the series are obtained using nonlinear programming to minimize the total traveling time subject to the constraints of velocity-dependent actuator forces.

  • PDF

A study on the influence of wheel/rail geometric parameters to equivalent conicity (차륜/레일 기하학적 인자의 등가답면구배에 미치는 영향)

  • Hur Hyun-Moo;Kwon Sung-Tae;Kim Hyung-Jin
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.430-434
    • /
    • 2004
  • The geometric parameters between wheel and rail change wheel/rail contact geometry characteristics, and this influence dynamic behavior of rolling stock. So, the selections of optimum geometric parameters between wheel and rail is important for planning of railway system. In this study, we have analyzed the influence of geometric parameters like wheel flange-back distance, gage, and rail inclination to the equivalent conicity relating dynamic behavior. The analyses show the following results. The widening of wheel flange-back distance increase the equivalent conicity, the widening of gage, rail inclination 1/20 compared with rail inclination 1/40 decrease the equivalent conicity.

  • PDF

GEOMETRIC DISTANCE FITTING OF PARABOLAS IN ℝ3

  • Kim, Ik Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.915-938
    • /
    • 2022
  • We are interested in the problem of fitting a parabola to a set of data points in ℝ3. It can be usually solved by minimizing the geometric distances from the fitted parabola to the given data points. In this paper, a parabola fitting algorithm will be proposed in such a way that the sum of the squares of the geometric distances is minimized in ℝ3. Our algorithm is mainly based on the steepest descent technique which determines an adequate number λ such that h(λ) = Q(u - λ𝛁Q(u)) < Q(u). Some numerical examples are given to test our algorithm.

Transfer Matrix Algorithm for Computing the Geometric Quantities of a Square Lattice Polymer

  • Lee, Julian
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1808-1813
    • /
    • 2018
  • I develop a transfer matrix algorithm for computing the geometric quantities of a square lattice polymer with nearest-neighbor interactions. The radius of gyration, the end-to-end distance, and the monomer-to-end distance were computed as functions of the temperature. The computation time scales as ${\lesssim}1.8^N$ with a chain length N, in contrast to the explicit enumeration where the scaling is ${\sim}2.7^N$. Various techniques for reducing memory requirements are implemented.

Efficient Calculation of Distance Fields Using Cell Subdivision (셀 분할을 이용한 거리장의 효율적 계산)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.147-156
    • /
    • 2008
  • A new approach based on cone prism intersection method combined with sorting algorithm is proposed for the fast and robust signed distance field computation. In the method, the space bounding the geometric model composed of triangular net is divided into multiple smaller cells. For the efficient calculation of distance fields, valid points among the triangular net which will generate minimum distances with current cell are selected by checking the intersection between current cell and cone prism generated at each point. The method is simple to implement and able to achieve an order of magnitude improvement in the computation time as compared to earlier approaches. Further the method is robust in handling the traditional sign problems. The validity of the suggested method was demonstrated by providing numerous examples including Boolean operation, shape deformation and morphing of complex geometric models.

Effects of geometric parameters of a combined nozzle for rock cutting using an abrasive waterjet (연마재 워터젯 암석절삭을 위한 결합 노즐의 기하학적 변수 영향)

  • Oh, Tae-Min;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.5
    • /
    • pp.517-528
    • /
    • 2012
  • Inserting a nozzle assembly into a removed cutting space during a continuous cutting operation is necessary in rock excavation using an abrasive waterjet. In this study, a combined two nozzle assembly is used to secure enough removal width. The shape of the cut space is affected by the geometric parameters (standoff distance, nozzle angle, and vertical distance between the nozzle tips) of the combined nozzle assembly. Abrasive waterjet cutting tests are performed with various geometric parameters for granite rock specimens. Optimized geometric parameters for the nozzle inserting process are determined and verified through the experimental tests.

ANALYSIS OF HEAT TRANSFER OF INCLINED IMPINGING JETS ON A CONCAVE SURFACE (엇갈리게 기울어진 충돌제트들에 의한 오목면 상의 열전달 성능해석)

  • Heo, M.W.;Lee, K.D.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.11-16
    • /
    • 2011
  • Numerical analyses have been carried out to analyze the three-dimensional turbulent heat transfer by impingement jet on a concave surface with variation of geometric configurations. Three-dimensional Reynolds averaged Navier-stokes equations have been calculated using the shear stress transport turbulent model. The numerical results for heat transfer rate were validated in comparison with the experimental data. The distance between jet nozzles and angle of inclined jet nozzle were selected as the geometric variables. Area-averaged Nusselt numbers on concave surface are evaluated to find the characteristics of heat transfer with the two geometric variables. The heat transfer increases as the distance between jet nozzles increases, and the inclined impinging jets show much better heat transfer performance than the vertical impinging jet.

Algebraic Geometric Codes and Subfields of Hermitian Function Field (대수기하부호와 Hermitian 함수체의 부분체)

  • 양경철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.3
    • /
    • pp.418-424
    • /
    • 1994
  • Like the Hermitian function field over GF(q), those subfields defined by y +y=x where s divides q+1 are also maximal, having the maximum number os places of degree one permissible by the Hasse-Weil bound. Geometric Goppa codes(or algebraic geometric codes) arising from these subfields of the Hermitian function field are studied in this paper. Their dimension and minimum distance are explicilty and completely presented for any m with m

  • PDF