• Title/Summary/Keyword: geometric design

Search Result 2,021, Processing Time 0.032 seconds

Mathematical Representation of Geometric Tolerances : Part 1 (기하 공차의 수학적 표현 : 1편)

  • Park, Sangho;Lee, Kunwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.78-89
    • /
    • 1996
  • Every mechanical component is fabricated with the variations in its size and shape, and the allowable range of the variation is specified by the tolerance in the design stage. Geometric tolerances specify the size or the thickness of each shape entity itself or its relative position and orientation with respect to datums. Since the range of shape variation can be represented by the variation of the coordinate system attached to the shape, the transformation matrix of the coordinate system would mathematically express the range of shape variation if the interval numbers are inserted for the elements of the transformation matrix. For the shape entity specified by the geometric tolerance with reference to datums, its range of variation can be also derived by propagating the transformation matrices composed of interval numbers. The propagation depends upon the order of precedence of datums.

  • PDF

Error Estimation for the Semi-Analytic Design Sensitivity Using the Geometric Series Expansion Method (기하급수 전개법을 이용한 준해석 민감도의 오차 분석)

  • Dan, Ho-Jin;Lee, Byung-Chai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.262-267
    • /
    • 2003
  • Error of the geometric series expansion method for the structural sensitivity analysis is estimated. Although the semi-analytic method has several advantages, accuracy of the method prevents it from practical application. One of the promising remedies is the use of geometric series formula for the matrix inversion. Its result of the sensitivity analysis converges that of the global difference method which is known as reliable one. To reduce computational efforts and to obtain reliable results, it is important to know how many terms need to expand. In this paper, the error formula is presented and Its usefulness is illustrated through numerical experiments.

Design of Flux Barrier type Synchronous Reluctance Motor to improve Saliency Ratio (토크비 개선을 위한 자속 장벽형 회전자 구조 동기 릴릭턴스 전동기의 설계)

  • Jang, S.M.;Park, P.I.;Lee, S.H.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.660-662
    • /
    • 2000
  • It is demonstrated that the torque performance of the flux barrier type synchronous reluctance motor(SynRM) can be improved in terms of geometric parameters. Torque ana power factor are related to the difference of inductances and the saliency ratio. And these inductance characteristics are determined by the geometric parameters of rotor: the number of layers. the width of iron to the width of flux barrier($K_w$). slot number and shape, airgap, bridge, etc. The relationship between geometric parameters. especially, $K_w$ and motor performance will be studied. This paper shows that torque and power factor are improved through redesign with considering geometric parameters. Performance comparisons of proto type SynRM and improved SynRM are given by FEA(Finite Element Analysis).

  • PDF

A Knowledge-Based CAD System for Gate in Injection Molding (사출성형 게이트 설계용 지식형 CAD 시스템)

  • 허용정
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.2
    • /
    • pp.33-37
    • /
    • 2001
  • The synthesis of gates of injection-molded parts has been done empirically, since it requires profound knowledge about the gate design,. which is not available to designers through current CAD systems. GATEWAY is a knowledge module which contains knowledge to Permit non-experts as well as mold design experts to generate acceptable gate design of injection-molded parts. A knowledge-based CAD system is constructed by adding the knowledge module, GATEWAY, for gate synthesis and appropriate CAE programs for mold design analysis to an existing geometric modeler to provide designers, at the initial stage, with comprehensive process knowledge for gate synthesis. Performance analysis and feature-based geometric modeling.

  • PDF

Optimal Shape Design of Excavator Boom Using the Semi-Analytical Method (민감도 근사해석법을 이용한 굴삭기 붐의 최적형상설계)

  • Lim, O-Kaung;Cho, Heon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.301-309
    • /
    • 1995
  • Shape optimal design of an excavator boom to minimize weight can be formulated as a nonlinear programming problem with an automesh refinement carried out by using the finite element method. The design variables are the radii and the coordinates of the circle to describe the excavator boundary shape. In addition to the displacement and stress constraints, geometric constraints are imposed such that the nodes cannot cross the certain range. The optimum design is obtained by using the PLBA nonlinear programming code. The sensitivity derivatives are calculated using the semi-analytical scheme. Numerical results of an excavator boom show potential for weight reduction of 4.4%(65.6 kgf) when considering the displacement, stress and geometric constraints.

Calculation of NURBS Curve Intersections using Bzier Clipping (B$\acute{e}$zier클리핑을 이용한NURBS곡선간의 교점 계산)

  • 민병녕;김재정
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.2
    • /
    • pp.113-120
    • /
    • 1998
  • Calculation of intersection points by two curves is fundamental to computer aided geometric design. Bezier clipping is one of the well-known curve intersection algorithms. However, this algorithm is only applicable to Bezier curve representation. Therefore, the NURBS curves that can represent free from curves and conics must be decomposed into constituent Bezier curves to find the intersections using Bezier clipping. And the respective pairs of decomposed Bezier curves are considered to find the intersection points so that the computational overhead increases very sharply. In this study, extended Bezier clipping which uses the linear precision of B-spline curve and Grevill's abscissa can find the intersection points of two NURBS curves without initial decomposition. Especially the extended algorithm is more efficient than Bezier clipping when the number of intersection points is small and the curves are composed of many Bezier curve segments.

  • PDF

A Study on the Geometric Body Design for a 3"-PFA-lined Plug Valve using CAD Softwares (CAD 소프트웨어를 활용한 3인치 PFA 라이닝 플러그 밸브 본체의 형상설계)

  • Kang, Shin-Han
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.1
    • /
    • pp.85-93
    • /
    • 2009
  • In this paper, the geometric design for the body of a 3"-PFA-lined plug valve is concerned, and body model which has less deformed PFA-resin after infection molding process is proposed. A CAE software is used to simulate the deformation due to heat in cooling. To reduce the deformation, some small shapes are added to PFA-resin surfaces related on wall of the valve housing. And thermal stress simulation with FEM methodology is followed after that. Also, the 3D-CAD package is used during the design processes. In this study, I tried to present the possibility to use the FEM analysis in the solid modeling process. So, the design engineer will be able to use analysis package effectively on his job within the limited range.

A Study on Deploying Time of Active Hood Lift System of Passenger Vehicles with Principal Design Parameters (중요 설계변수에 따른 승용차 능동후드리프트 시스템의 전개시간 연구)

  • Lee, Tae-Hoon;Yoon, Gun-Ha;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.63-68
    • /
    • 2016
  • This research investigates the deployment time of an active hood lift system(AHLS) activated a gunpowder actuator for the passenger vehicle. The deployment time of the system is investigated by changing the principal design parameters of the system. In order to achieve this goal, after introducing the geometric structure and operating principle of the AHLS, the dynamic equations of the system are formulated for deploying motion. Subsequently, using the dynamic equations, the deployment time of the system is determined by changing several geometric design parameters such as location of actuator. It is then identified which design parameters are main factors to affect the deployment time of AHLS.

Single Phase Switched Reluctance Motor Optimum Design Using Response Surface Methodology and Finite Element Method (반응표면법과 유한요소법을 이용한 단상 스위치드 릴럭턴스 전동기의 최적 설계)

  • Lim, Seung-Bin;Choi, Jae-Hak;Park, Jae-Bum;Son, Yeoung-Gyu;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.12
    • /
    • pp.596-607
    • /
    • 2006
  • This paper presents Single Phase Switched Reluctance Motor (SPSRM) optimum design for vacuum cleaners using Response Surface Methodology (RSM) to determine geometric parameters, and the 2-D Finite Element Method (FEM) has been coupled with the circuit equations of the driving converter. Additionally, an optimum process for SPSRM has been proposed and peformed with geometric and electric parameters thereby influencing the inductance variation and effective torque generation as design variables. SPSRM performances have also been analyzed to determine an optimal design model for maximized efficiency at high power factor. In order to confirm the propriety of the Finite Element Method and motor performance calculation, simulation waveform and experiment waveform for motor voltage and current were compared.