• Title/Summary/Keyword: geometric calibration

Search Result 180, Processing Time 0.029 seconds

A Study of Feedrate Optimization for Tolerance Error of NC Machining (NC가공에서 허용오차를 고려한 가공속도 최적화에 관한 연구)

  • Lee, Hee-Seung;Lee, Cheol-Soo;Kim, Jong-Min;Heo, Eun-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.852-858
    • /
    • 2013
  • In numerical control (NC) machining, a machining error in equipment generally occurs for a variety of reasons. If there is a change in direction in the NC code, the characteristics of the automatic acceleration or deceleration function cause an overlap of each axis of the acceleration and deceleration zones, which in turn causes a shift in the actual processing path. Many studies have been conducted for error calibration of the edge as caused by automatic acceleration or deceleration in NC machining. This paper describes a geometric interpretation of the shape and processing characteristics of the operating NC device. The paper then describes a way to determine a feedrate that achieves the desired tolerance by using linear and parabolic profiles. Experiments were conducted by the validate equations using a three-axis NC machine. The results show that the machining errors were smaller than the machine resolution. The results also clearly demonstrate that the NC machine with the developed system can successfully predict machining errors induced with a change in direction.

Accuracy of Close-Range Industrial Photogrammetry Using CCTV Type CCD Camera (CCTV유형 CCD 카메라를 이용한 근거리 산업사진측량의 정확도)

  • 이진덕;최용진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.3
    • /
    • pp.283-290
    • /
    • 2001
  • This paper demonstrates the performance of industrial precise measurement using the digital close-range photograrmmetric system based on a off-the-shelf CCTV-type CCD camera. The system was constructed with a CCD camera and a PC with a frame grabber, coupled with digital image mensuration and self-calibrating bundle adjustment techniques. An artificial fish reef with cubic shape was taken as an object for the application test of the system and the digital images were acquired on multi-station convergent network around the object. The geometric calibration of the CCD camera and the phototriangulation of the entire surface of the object was carried out simultaneously by means of self-calibrating bundle adjustment technique. Also the system comprising a high resolution still-video camera Kodak DCS, which high accuracy potential has been already established, were employed in similar network condition. Then the results from two different camera systems were compared in the accuracies of phototriangulation.

  • PDF

Post-earthquake building safety evaluation using consumer-grade surveillance cameras

  • Hsu, Ting Y.;Pham, Quang V.;Chao, Wei C.;Yang, Yuan S.
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.531-541
    • /
    • 2020
  • This paper demonstrates the possibility of evaluating the safety of a building right after an earthquake using consumer-grade surveillance cameras installed in the building. Two cameras are used in each story to extract the time history of interstory drift during the earthquake based on camera calibration, stereo triangulation, and image template matching techniques. The interstory drift of several markers on the rigid floor are used to estimate the motion of the geometric center using the least square approach, then the horizontal interstory drift of any location on the floor can be estimated. A shaking table collapse test of a steel building was conducted to verify the proposed approach. The results indicate that the accuracy of the interstory drift measured by the cameras is high enough to estimate the damage state of the building based on the fragility curve of the interstory drift ratio. On the other hand, the interstory drift measured by an accelerometer tends to underestimate the damage state when residual interstory drift occurs because the low frequency content of the displacement signal is eliminated when high-pass filtering is employed for baseline correction.

Exploration of Isovist Fields to Model 3D Visibility With Building Facade

  • Chang, Dong-Kuk;Park, Joo-Hee
    • Architectural research
    • /
    • v.13 no.3
    • /
    • pp.19-29
    • /
    • 2011
  • Visibility of a space have been defined in several different ways: such as the axial line covering a convex space, a convex space defining the fattest shape in a space and an Isovist field formed by a field of vision at a given vantage point. Isovist fields are referred to as a descriptive medium to describe a movement by reviewing and analyzing geometric properties in them. Many descriptive methods for analysis of three-dimensional isovist are applied to analyzing the morphological properties in a 3D space more realistically. Although these models are regarded as a more advanced method for describing spatial properties, they have pros and cons such as complex mathematical calculations and somewhat arbitrary calibration in addition to huge consumption of memory space. These difficulties lead to the development of a three-dimensional visual accessibility model that explores the implication of building shape on the calculation of isovist fields drawn on a 2D plane. We propose a conceptual framework of how to measure the isovist field not as a 3D volume but as a combination of 2D plane on the ground with the 3D building shape of it's facade.

Person-following of a Mobile Robot using a Complementary Tracker with a Camera-laser Scanner (카메라-레이저스캐너 상호보완 추적기를 이용한 이동 로봇의 사람 추종)

  • Kim, Hyoung-Rae;Cui, Xue-Nan;Lee, Jae-Hong;Lee, Seung-Jun;Kim, Hakil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.78-86
    • /
    • 2014
  • This paper proposes a method of tracking an object for a person-following mobile robot by combining a monocular camera and a laser scanner, where each sensor can supplement the weaknesses of the other sensor. For human-robot interaction, a mobile robot needs to maintain a distance between a moving person and itself. Maintaining distance consists of two parts: object tracking and person-following. Object tracking consists of particle filtering and online learning using shape features which are extracted from an image. A monocular camera easily fails to track a person due to a narrow field-of-view and influence of illumination changes, and has therefore been used together with a laser scanner. After constructing the geometric relation between the differently oriented sensors, the proposed method demonstrates its robustness in tracking and following a person with a success rate of 94.7% in indoor environments with varying lighting conditions and even when a moving object is located between the robot and the person.

Kinematic analysis of the wire parallel mechanism for robot pose measurement (로봇자세 측정용 와이어 병렬메카니즘의 기구학적 해석)

  • Jeong, Jae-Won;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2146-2155
    • /
    • 1997
  • This paper presents the Wire Parallel Mechanism for robot pose measurement which can be used to robot calibration. It is constructed with six parallel links using wire. The position and orientation of the end effector of a robot are calculated from the wire length that measured by the encoder. The unique solution is obtained from a Newton-Raphson method and geometric configuration of the mechanism, also the method to estimate a measuring space is presented. Through the simulations, it is verified that the proposed mechanism can measure a robot pose, and has a large measuring space. In conclusion, it can be used effectively in a robot pose measurement with little cost and effort.

Effects of geometric parameters of fluidic flow meter on flow rate (Fluidic 유량계의 기하학적 변수가 유동률에 미치는 영향)

  • Park, Gyeong-Am;Yun, Gi-Yeong;Yu, Seong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1608-1614
    • /
    • 1997
  • The fluidic flow meter detects the gas flow rate based on the principle of fluidic oscillation instead of the conventional displacement method. It has many merits: wide rangeability, no moving mechanical parts and calibration insensitive to physical properties of fluids. The width of nozzle, size of oscillation chamber, size of target, width of outlet are tested to obtain the effects of jet oscillation on the fluidic flow meter. As the width of nozzle is too wide compared with the size of target, jet oscillation is unstable. The oscillation frequency decreases as the distance between the nozzle and target increases and also as the distance between target and outlet contraction increases. Two different vortexes exist in the front and the rear regions of the target, and they affect the oscillation frequency. The outlet contraction is very important, because the feedback flow is generated by the blocking of the flow. As the width of outlet increases, the jet oscillation frequency decreases. The linearity of this tested flow meter is quite good.

Real-Time Geometric Calibration of Everywhere Display (실시간 보정을 지원하는 Everywhere Display)

  • Choi, Hyun-Chul;Kyoung, Dong-Wuk;Han, Eun-Jung;Yang, Jong-Yeol;Jung, Kee-Chul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.116-120
    • /
    • 2006
  • 최근 유비쿼터스 환경에서 프로젝터를 기반으로 사용자가 원하는 위치에 영상을 제공하는 유비쿼터스 디스플레이 연구가 진행 중이다. 프로젝터는 투사방향에 따라 영상의 왜곡이 발생함으로써, 프로젝터 기반의 유비쿼터스 디스플레이는 왜곡된 영상을 보정하는 것이 매우 중요하다. 영상 보정을 위한 기존 연구는 특정마커를 설치하거나 특정 패턴의 영상을 투사하는 등의 선행 작업을 통해 기하보정을 수행한다. 이 방법들은 투사방향이 변화될 때마다 선행 작업을 요구하므로 실시간 기하보정을 수행할 수 없다는 단점이 있다. 본 논문은 특정마커나 카메라와 같은 별도의 장치 없이도 투사되는 방향에 따라 영상의 왜곡 정도를 예측하여 실시간으로 보정된 영상을 제공하는 기하보정 시스템을 제안한다. 제안된 시스템은 특정 보정장치를 사용하지 않고 보정함으로써, 약 27fps의 빠른 처리속도를 가진다. 또한 상용 리모컨을 사용하여 프로젝터의 투사방향을 쉽게 제어하는 편리한 인터페이스를 제공한다.

  • PDF

A Study on Fisheye Lens based Features on the Ceiling for Self-Localization (실내 환경에서 자기위치 인식을 위한 어안렌즈 기반의 천장의 특징점 모델 연구)

  • Choi, Chul-Hee;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.442-448
    • /
    • 2011
  • There are many research results about a self-localization technique of mobile robot. In this paper we present a self-localization technique based on the features of ceiling vision using a fisheye lens. The features obtained by SIFT(Scale Invariant Feature Transform) can be used to be matched between the previous image and the current image and then its optimal function is derived. The fisheye lens causes some distortion on its images naturally. So it must be calibrated by some algorithm. We here propose some methods for calibration of distorted images and design of a geometric fitness model. The proposed method is applied to laboratory and aile environment. We show its feasibility at some indoor environment.

Controlling the Depth of Microchannels Formed during Rolling-based Surface Texturing

  • Bui, Quang-Thanh;Ro, Seung-Kook;Park, Jong-Kweon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.410-420
    • /
    • 2016
  • The geometric dimension and shape of microchannels that are formed during surface texturing are widely studied for applications in flow control, and drag and friction reduction. In this research, a new method for controlling the deformation of U channels during micro-rolling-based surface texturing was developed. Since the width of the U channels is almost constant, controlling the depth is essential. A calibration procedure of initial rolling gap, and proportional-integral PI controllers and a linear interpolation have been applied simultaneously to control the depth. The PI controllers drive the position of the pre-U grooved roll as well as the rolling gap. The relationship between the channel depth and rolling gap is linearized to create a feedback signal in the depth control system. The depth of micro channels is studied on A2021 aluminum lamina surfaces. Overall, the experimental results demonstrated the feasibility of the method for controlling the depth of microchannels.