• Title/Summary/Keyword: geometric average height

Search Result 23, Processing Time 0.024 seconds

The study for calculating the geometric average height of Deacon equation suitable to the domestic wind correction methodology. (국내풍속보정에 적합한 Deacon 방정식의 기하평균높이 산정방법에 대한 연구)

  • Cheang, Eui-Heang;Moon, Chae-Joo;Jeong, Moon-Seon;Jo, Kyu-Pan;Park, Gui-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.9-14
    • /
    • 2010
  • The main cause of global warming is carbon dioxide generated from the use of fossil fuels, and active research on the reduction of carbon is in progress to slow down the increasing global warming. Wind turbines generate electricity from kinetic energy of wind and are considered as representative for an energy source that helps to reduce carbon emission. Since the kinetic energy of wind is proportional to the cube of the wind speed, the intensity of wind affects wind farm construction validity the most. Therefore, to organize a wind farm, validity analysis should be conducted first through measurement of the wind resources. To facilitate the approval and permission and reduce installation cost, measuring sensors should be installed at locations below the actual wind turbine hub. Wind conditions change in shape with air density, and air density is most affected by the variable sterrain and surface type. So the magnitude of wind speed depends on the ground altitude. If wind conditions are measured at a location below the wind turbine hub, the wind speed has to be extrapolated to the hub height. This correction of wind speed according to height is done with the Deacon equation used in the statistical analysis of previously observed data. In this study, the optimal Deacon equation parameter was obtained through the analysis of the correction of the wind speed error with the Deacon equation based on the characteristics of terrain.

A Numerical Study of the Heat Transfer Characteristics in a Printed Circuit Board (PCB내의 열전달특성에 관한 수치적 연구)

  • Pak, H.Y.;Park, K.W.;Lee, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.461-472
    • /
    • 1995
  • The interaction of laminar mixed convection and surface radiation in a two-dimensional channel with an array of rectangular blocks is analyzed numerically. Three blocks are maintained at high temperature and the other bottom and top horizontal walls are insulated. Discrete ordinate method(DOM) is introduced to analyze the radiative heat transfer. The effects of the variations of Reynolds number and channel specifications on the heat transfer characteristics are investigated. The average Nusselt numbers along the block surfaces are correlated and presented in terms of Reynolds number and dimensionless geometric parameters such as the block spacing, height and channel spacing. For the conditions considered in this study, average Nusselt numbers along the block surfaces are strongly influenced by the channel spacing and Reynolds number but weakly influenced by the block spacing and block height.

  • PDF

Estimation of Person Height and 3D Location using Stereo Tracking System (스테레오 추적 시스템을 이용한 보행자 높이 및 3차원 위치 추정 기법)

  • Ko, Jung Hwan;Ahn, Sung Soo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • In this paper, an estimation of person height and 3D location of a moving person by using the pan/tilt-embedded stereo tracking system is suggested and implemented. In the proposed system, face coordinates of a target person is detected from the sequential input stereo image pairs by using the YCbCr color model and phase-type correlation methods and then, using this data as well as the geometric information of the stereo tracking system, distance to the target from the stereo camera and 3-dimensional location information of a target person are extracted. Basing on these extracted data the pan/tilt system embedded in the stereo camera is controlled to adaptively track a moving person and as a result, moving trajectory of a target person can be obtained. From some experiments using 780 frames of the sequential stereo image pairs, it is analyzed that standard deviation of the position displacement of the target in the horizontal and vertical directions after tracking is kept to be very low value of 1.5, 0.42 for 780 frames on average, and error ratio between the measured and computed 3D coordinate values of the target is also kept to be very low value of 0.5% on average. These good experimental results suggest a possibility of implementation of a new stereo target tracking system having a high degree of accuracy and a very fast response time with this proposed algorithm.

Heat Transfer Characteristics of Radiation-Mixed Convection in a Three-Dimensional PCB Channel (3차원 PCB 채널내에서의 복사-혼합대류 열전달 특성)

  • Lee, J.H.;Park, K.W.;Pak, H.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.561-575
    • /
    • 1996
  • The interaction of turbulent mixed convection and surface radiation in a three-dimensional channel with the heated blocks is analyzed numerically. Two blocks are maintained at high temperature and the other bottom and horizontal walls are insulated. S-4 method is employed to calculate the effect of the radiative heat transfer. The low Reynolds number k-$\varepsilon$ model proposed by Launder and Sharma is used to estimate the turbulent influence on the heat transfer enhancement. From above modeling, the effects of various channel specifications on the flow and heat transfer characteristics are investigated. The variables used for the present study are Reynolds number, block spacing, the channel height spacing for block and the emissivity. Average Nusselt numbers along the block surfaces are correlated and presented in terms of Reynolds number, emissivity and dimensionless geometric parameters. For the range of conditions in this study, average Nusselt numbers along the block surfaces are strongly influenced by the Reynolds numbers and channel height spacing for block but weakly influenced by the block spacing and the emissivity of the adiabatic walls.

  • PDF

Experimental Study on the Heat Transfer Characteristics of Spiral Fin-Tube Heat Exchangers (나선형 핀튜브 열교환기의 열전달 특성에 관한 실험적 연구)

  • Yun Rin;Kim Yongchan;Kim Sru;Choi Jong Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.529-535
    • /
    • 2005
  • This study experimentally examines the air-side performance of spiral finned tube heat exchangers. The effects of fin spacing, fin height, and tube alignment were investigated. Reduction of fin spacing decreased the Colburn j factor. However, the effect of fin height on the Colburn j factor was negligible. An increase of tube row decreased the Nusselt number for both staggered and in-line tube alignments. However, the decrease of the Nusselt number for the in-line tube alignment was much more significant than that of the staggered tube alignment. The average Nusselt number of the staggered tube alignment was larger than that of the in-line tube alignment by $10\%$ when the Reynolds number ranged from 300 to 1700. An empirical correlation of the Nusselt number was developed by using geometric parameters of heat exchanger and correction factors. The correction factor considered the effects of tube alignment and number of tube rows on the heat transfer. The proposed correlation yielded a mean deviation of $4\%$ from the present data.

A ROENTGENOCEPHALOMETRIC STUDY ON THE SKELETAL FACTORS IN OPEN-BITE AND DEEP-BITE (개교(開咬)와 과개교합(過蓋咬合)의 골격요소에 관(關)한 두부방사선(頭部放射線) 계측학적(計測學的) 연구(硏究))

  • Park, Jin-Sung
    • The korean journal of orthodontics
    • /
    • v.9 no.1
    • /
    • pp.133-140
    • /
    • 1979
  • The author compared patients showing two extremes of incisor vertical relationship to find out differences in craniofacial morphology which might influence face height and incisor overbite. The subjects consisted of 53 open-bite cases and the same number of deep-bite cases. The results were as follows: 1. On the average, the lower face height was significantly greater in open-bite cases than in deep-bite cases. 2. In open-bite cases, gonin-menton length was significantly greater than in deep-bite cases. In deep-bite cases, anterior cranial base length and posterior cranial base length were significantly greater in open-bite cases. 3. The jaw angle was significantly greater in open-bite cases. 4. The gonion-menton-nasion angle was significantly greater in deep-bite cases. 5. From geometric standpoint, the increase of jaw and joint angle would increase lower face height, but these two showed negative correlation. 6. The sizes of the jaw and joint angle might be factors of open-bite or deep-bite, but these were not the only variables that determined lower face height. 7. In open-bite cases, there was a closer correlationship between lower face height and the other linear measurments than in deep-bite cases. In deep-bite cases, there was a closer correlationship between lower face height and the other angular measurements than in open-bite cases. 8. Considering both linear and angular measurements of facial polygon, all contributed significantly to the lower face height. The nonsignificant variables were jaw and joint angle in open-bite cases, and anterior cranial base length, jaw angle, and joint angle in deep-bite cases.

  • PDF

Heat Transfer from Rectangular Fins with a Circular Base (원형 베이스와 사각 휜 주위의 열전달 해석)

  • Yu, Seung-Hwan;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.467-472
    • /
    • 2011
  • The heat transfer over a radial heat sink, adapted for LED (light emitting diode) downlights, was experimentally and analytically investigated. We added radiation heat transfer into a previous calculation that neglected this factor. The numerical results agreed well with experimental results. Parametric studies were performed to compare the effects of the geometric parameters (fin length, fin height, ideal number of fins) and the operating parameter (heat flux) on the average heat-sink temperature from the heat-sink array. We found the fin length that maximizes the heattransfer performance. As the emissivity increased, the effect of geometric parameters on the radiation heat transfer decreased.

Seismic behavior of beam-to-column connections with elliptic slit dampers

  • Shahri, Saeed Farahi;Mousavi, Seyed Roohollah
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.289-301
    • /
    • 2018
  • The rigid steel connections were suffered severe damage because of low rotational capacity during earthquakes. Hence, many investigations have been conducted on the connections of steel structures. As a solution, steel slit dampers were employed at the connections to prevent brittle failure of connections and damage of main structural members. Slit damper is a plate or a standard section with a number of slits in the web. The objective of this paper is to improve the seismic performance of steel slit dampers in the beam-to-column connection using finite element modeling. With reviewing the previous investigations, it is observed that slit dampers were commonly fractured in the end parts of the struts. This may be due to the low participation of struts middle parts in the energy dissipation. Thus, in the present study slit damper with elliptic slits is proposed in such a way that end parts of struts have more energy absorption area than struts middle parts. A parametric study is conducted to investigate the effects of geometric parameters of elliptic slit damper such as strut width, strut height and plate thickness on the seismic performance of the beam-to-column connection. The stress distribution is improved along the struts in the proposed slit damper with elliptic slits and the stress concentration is decreased in the end parts of struts. The average contributions of elliptic slit dampers, beam and other sections to the energy dissipation are about 97.19%, 2.12% and 0.69%, respectively.

Effects of Geometric Parameters of a Bobsleigh on Aerodynamic Performance (봅슬레이의 형상변화가 공력성능에 미치는 영향)

  • Shim, Hyeon-Seok;Jung, Hyo-Yeon;Kim, Jun-Hee;Kim, Kwang-Yong
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.233-240
    • /
    • 2015
  • Analysis of the aerodynamic performance of a bobsleigh has been performed for various types of bobsleigh body shape. To analyze the aerodynamic performance of the bobsleigh, three-dimensional Reynolds-averaged Navier-Stoke equations were used with the standard k-${\varepsilon}$ model as a turbulence closure. Grid structure was composed of unstructured tetrahedral grids. The radii of curvature of cowling, and height and length of front bumper at the tip on the drag coefficient were selected as geometric parameters. And, the effects of these parameters on the aerodynamic performance, i.e., the drag coefficient, were evaluated. The results shows that the aerodynamic performance is significantly affected by the height of front bumper and radius of curvature.

Numerical Optimization of Rib Shape to Enhance Turbulent Heat Transfer (난류열전달 증진을 위한 리브형상의 수치최적화)

  • Kim, S.S.;Kim, K.Y.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.304-308
    • /
    • 2000
  • This paper presents a numerical optimization method to design geometric shape of streamwise periodic ribs mounted on one of the principal walls to enhance turbulent heat transfer in a rectangular channel flow. The golden section method is used for the one dimensional search. The optimization is based on Wavier-Stokes analysis of turbulent forced convection with $k-{\varepsilon}$ turbulence model. The width-to-height ratio of a rib is chosen as a design variable. The object function is defined as an inverse of average Nusselt number. An optimum shape of the rib has been obtained with reasonable computing time.

  • PDF