• Title/Summary/Keyword: geometric and loading effects

Search Result 76, Processing Time 0.017 seconds

A new four-unknown equivalent single layer refined plate model for buckling analysis of functionally graded rectangular plates

  • Ibrahim Klouche Djedid;Sihame Ait Yahia;Kada Draiche;Emrah Madenci;Kouider Halim Benrahou;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.517-530
    • /
    • 2024
  • This paper presents a new four-unknown equivalent single layer (ESL) refined plate theory for the buckling analysis of functionally graded (FG) rectangular plates with all simply supported edges and subjected to in-plane mechanical loading conditions. The present model accounts for a parabolic variation of transverse shear stress over the thickness, and accommodates correctly the zero shear stress conditions on the top and bottom surfaces of the plate. The material properties are supposed to vary smoothly in the thickness direction through the rules of mixture named power-law gradation. The governing equilibrium equations are formulated based on the total potential energy principle and solved for simply supported boundary conditions by implementing the Navier's method. A numerical result on elastic buckling using the current theory was computed and compared with those published in the literature to examine the accuracy of the proposed analytical solution. The effects of changing power-law exponent, aspect ratio, thickness ratio and modulus ratio on the critical buckling load of FG plates under different in-plane loading conditions are investigated in detail. Moreover, it was found that the geometric parameters and power-law exponent play significant influences on the buckling behavior of the FG plates.

Comparative study of flexural stress estimation methods in concrete pavement considering tied concrete shoulder

  • Jeetendra S. Khichad;Rameshwar J. Vishwakarma;Samadhan G. Morkhade;Siddharth Mehndiratta
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.177-187
    • /
    • 2024
  • In this study, compared two distinct estimation methods (stress charts and regression equations) proposed by the Indian road congress design guideline (IRC:58-2015) to determine flexural stress in Jointed Plain Concrete Pavement (JPCP). The occurrence of critical flexural stresses in pavement slabs is due to the combined effects of wheel loads and temperature. These stresses depend on various factors such as material properties of concrete, soil-subgrade strength, loading, and geometric properties of the slab. In order to account for the practical variability of these factors, critical edge stresses are determined using both methods and compared considering tied concrete shoulder. IRC:58 (2015) suggests, the stresses calculated by both the procedures should provide the same results. However, when these stresses are compared for the same configurations and same loading conditions, large variations are observed. The effect of tied concrete shoulder on reduction in critical edge stress is observed. Based on the study, certain important conclusions and recommendations are presented.

Shear behavior of RC interior joints with beams of different depths under cyclic loading

  • Xi, Kailin;Xing, Guohua;Wu, Tao;Liu, Boquan
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.145-153
    • /
    • 2018
  • Extensive reinforced concrete interior beam-column joints with beams of different depths have been used in large industrial buildings and tall building structures under the demand of craft or function. The seismic behavior of the joint, particularly the relationship between deformation and strength in the core region of these eccentric reinforced concrete beam-column joints, has rarely been investigated. This paper performed a theoretical study on the effects of geometric features on the shear strength of the reinforced concrete interior beam-column joints with beams of different depths, which was critical factor in seismic behavior. A new model was developed to analyze the relationship between the shear strength and deformation based on the Equivalent Strut Mechanism (ESM), which combined the truss model and the diagonal strut model. Additionally, this paper developed a simplified calculation method to estimate the shear strength of these type eccentric joints. The accuracy of the model was verified as the modifying analysis data fitted to the test results, which was a loading test of 6 eccentric joints conducted previously.

Curved finite strip and experimental study of thin stiffened composite cylindrical shells under axial compression

  • Mojtaba Rafiee;Hossein Amoushahi;Mehrdad Hejazi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.181-197
    • /
    • 2024
  • A numerical method is presented in this paper, for buckling analysis of thin arbitrary stiffened composite cylindrical shells under axial compression. The stiffeners can be placed inside and outside of the shell. The shell and stiffeners are operated as discrete elements, and their interactions are taking place through the compatibility conditions along their intersecting lines. The governing equations of motion are obtained based on Koiter's theory and solved by utilizing the principle of the minimum potential energy. Then, the buckling load coefficient and the critical buckling load are computed by solving characteristic equations. In this formulation, the elastic and geometric stiffness matrices of a single curved strip of the shell and stiffeners can be located anywhere within the shell element and in any direction are provided. Moreover, five stiffened composite shell specimens are made and tested under axial compression loading. The reliability of the presented method is validated by comparing its numerical results with those of commercial software, experiments, and other published numerical results. In addition, by using the ANSYS code, a 3-D finite element model that takes the exact geometric arrangement and the properties of the stiffeners and the shell into consideration is built. Finally, the effects of Poisson's ratio, shell length-to-radius ratio, shell thickness, cross-sectional area, angle, eccentricity, torsional stiffness, numbers and geometric configuration of stiffeners on the buckling of stiffened composite shells with various end conditions are computed. The results gained can be used as a meaningful benchmark for researchers to validate their analytical and numerical methods.

Nonlinear bending analysis of laminated composite stiffened plates

  • Patel, Shuvendu N.
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.867-890
    • /
    • 2014
  • This paper deals with the geometric nonlinear bending analysis of laminated composite stiffened plates subjected to uniform transverse loading. The eight-noded degenerated shell element and three-noded degenerated curved beam element with five degrees of freedom per node are adopted in the present analysis to model the plate and stiffeners respectively. The Green-Lagrange strain displacement relationship is adopted and the total Lagrangian approach is taken in the formulation. The convergence study of the present formulation is carried out first and the results are compared with the results published in the literature. The stiffener element is reformulated taking the torsional rigidity in an efficient manner. The effects of lamination angle, depth of stiffener and number of layers, on the bending response of the composite stiffened plates are considered and the results are discussed.

A simplified analysis of the behavior of suspension bridges under live load

  • Stavridis, Leonidas T.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.5
    • /
    • pp.559-576
    • /
    • 2008
  • Having established the initial geometry and cable force of a typical three span suspension bridge under permanent load, the additional maximum response of the cable and the stiffening girder due to live load are determined, by means of an analytic procedure, considering the girder first hinged at its ends and then continuous through the main towers. The problem of interaction between the cable and the stiffening girder is examined taking under due consideration the second order effects, whereby, through the analogy to a fictitious tensioned beam under transverse load, a closed -form solution is achieved by means of a simple quadratic equation. It is found that the behavior of the whole system is governed by five simple dimensionless parameters which enable a quick determination of all the relevant design magnitudes of the bridge. Moreover, by introducing these parameters, a set of diagrams is presented, which enable the estimation of the influence of the geometric and loading data on the response and permit its immediate evaluation for preliminary design purposes.

Numerical study on RC flat plates subjected to combined axial and transverse load

  • Park, Honggun
    • Structural Engineering and Mechanics
    • /
    • v.8 no.2
    • /
    • pp.137-150
    • /
    • 1999
  • This paper presents a numerical study on the flat plates in deep basements, subjected to floor load and in-plane compressive load due to soil and hydraulic lateral pressure. For nonlinear finite element analysis, a computer program addressing material and geometric nonlinearities is developed. The validity of the numerical model is established by comparison with existing experiments performed on plates simply supported on four edges. The flat plates to be studied are designed according to the Direct Design Method in ACI 318-95. Through numerical study on the effects of different load combinations and loading sequence, the load condition that governs the strength of the flat plates is determined. For plates under the governing load condition, parametric studies are performed to investigate the strength variations with reinforcement ratio, aspect ratio, concrete strength, and slenderness ratio. Based on the numerical results, the floor load magnification factor is proposed.

A Study on Gas-Liquid Interfacial Areas with the Stirrer Spends for A$CO_2$bsorption in Agitated Vessel (평면 교반조에서의 $CO_2$ 기체흡수에서 교반속도에 따른 기-액 계면 면적에 관한 연구)

  • 박문기;문영수
    • Journal of Environmental Science International
    • /
    • v.3 no.4
    • /
    • pp.403-408
    • /
    • 1994
  • Catalytic slurry reactors, in which a solid maintained in the rom of fine particles suspended in a liquid, are frequently used in chemical and biochemical and industries. In these processes the particle loading is normally low so that the effects of particles on the liquid-film mass transfer coefacent and the gas-liquid interface area are assumed to be negligible. But it is known from the works, amongst others, that the finely powdered activated carbon can increase the gas-liquid mass transfer significantly in surface-aerated reactors. The stirred cell (13.2cm inside diameter) contained four baffles and at the stirring speeds range of 80 ∼ 300ppm, the gas-liquid interfacial area could be considered as that of the cross section of the vessel (that is, 130.1cm2). When the stirrer speeds were increased, the effective interfacial area was slightly higher than the geometric area and was obtained experimentally from the Danckwerts plots. Key Words : gas-liquid interfacial area, Duckwert's Plot stirred dell. mass transfer coefficient.

  • PDF

Human induced vibration vs. cable-stay footbridge deterioration

  • Casciati, S.
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.17-29
    • /
    • 2016
  • In this paper, the possibility of using human induced loading (HIL) to detect a decrease of tension in the cable-stays of an existing footbridge is investigated. First, a reliable finite elements model of an existing footbridge is developed by calibration with experimental data. Next, estimates of the tension in the cables are derived and their dependency on the modal features of the deck is investigated. The modelling of the HIL is briefly discussed and used to perform the nonlinear, large strain, dynamic finite elements analyses. The results of these analyses are assessed with focus on characterizing the time histories of the tension in the cables under pedestrian crossing and their effects on the deck response for different initial conditions. Finally, the control perspective is introduced in view of further research.

Theory & Design of Electrocatalyst for Polymer Electrolyte Membrane Fuel Cell (고분자 연료전지용 전기촉매의 이론과 설계)

  • Yoo, Sung-Jong;Jeon, Tae-Yeol;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.11-25
    • /
    • 2009
  • Fuel cells are expected to be one of the major clean new energy sources in the near future. However, the slow kinetics of electrocatalytic hydrogen oxidation reaction (HOR) and oxygen reduction reaction (ORR), and the high loading of Pt for the anode and cathode material are the urgent issues to be addressed since they determine the efficiency and the cost of this energy source. In this review paper, a new approach was developed for designing electrocatalysts for the HOR and ORR in fuel cells. It was found that the electronic properties of Pt could be fine-tuned by the electronic and geometric effects introduced by the substrate alloy metal and the lateral effects of the neighboring metal atoms. The role of substrate was found reflected in a volcano plot for the HOR and ORR as a function of their calculated d-band centers. This paper demonstrated a viable way to designing the electrocatalysts which could successfully alleviate two issue facing the commercializing of the fuel cell-the cost of electrocatalysts and their efficiency.