Browse > Article
http://dx.doi.org/10.5229/JKES.2009.12.1.011

Theory & Design of Electrocatalyst for Polymer Electrolyte Membrane Fuel Cell  

Yoo, Sung-Jong (School of Chemical and Biological Engineering & Research Center for Energy Conversion and Storage, Seoul National University)
Jeon, Tae-Yeol (School of Chemical and Biological Engineering & Research Center for Energy Conversion and Storage, Seoul National University)
Sung, Yung-Eun (School of Chemical and Biological Engineering & Research Center for Energy Conversion and Storage, Seoul National University)
Publication Information
Journal of the Korean Electrochemical Society / v.12, no.1, 2009 , pp. 11-25 More about this Journal
Abstract
Fuel cells are expected to be one of the major clean new energy sources in the near future. However, the slow kinetics of electrocatalytic hydrogen oxidation reaction (HOR) and oxygen reduction reaction (ORR), and the high loading of Pt for the anode and cathode material are the urgent issues to be addressed since they determine the efficiency and the cost of this energy source. In this review paper, a new approach was developed for designing electrocatalysts for the HOR and ORR in fuel cells. It was found that the electronic properties of Pt could be fine-tuned by the electronic and geometric effects introduced by the substrate alloy metal and the lateral effects of the neighboring metal atoms. The role of substrate was found reflected in a volcano plot for the HOR and ORR as a function of their calculated d-band centers. This paper demonstrated a viable way to designing the electrocatalysts which could successfully alleviate two issue facing the commercializing of the fuel cell-the cost of electrocatalysts and their efficiency.
Keywords
Polymer electrolyte membrane fuel cell; d-band center; Hydrogen oxidation reaction; Oxygen reduction reaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Kiejna, 'Comment on the surface segregation in alkalimetal alloys' J. Phys. Condens. Matter, 2, 6331 (1990)   DOI   ScienceOn
2 B. Coq and F. Figueras, 'Structure-Activity relationships in catalysis by metals: Some aspects of particle size, bimetallic and supports effects' Coord. Chem. Rev., 178-180, 1753 (1998)   DOI   ScienceOn
3 C. A. Grimes, O. K. Varghese, and S. Ranjan, Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis, Springer, New York (USA), (2008)
4 K. Kordesch and G. Simander, Fuel Cells and their Applications, VCH, Weinheim (Germany), (1996)
5 W. Vielstich, A. Lamm, and H. Gasteiger, Handbook of Fuel Cells: Fundamentals, Technology and Applications, Wiley, Chichester (UK), (2003)
6 I. Fishtik, C. A. Callaghan, J. D. Fehribach, and R. Datta, 'A reaction route graph analysis of the electrochemical hydrogen oxidation and evolution reactions' J. Electroanal. Chem., 576, 57 (2005)   DOI   ScienceOn
7 R. R. Adzic, Electrocatalysis, Wiley-VCH, New York (USA), (1998)
8 A. Ruban, B. Hammer, P. Stoltze, H. L. Skriver, and J. K. Norskov, 'Surface electronic structure and reactivity of transition and noble metals' J. Mol. Catal. A, 115, 421 (1997)   DOI   ScienceOn
9 B. Hammer and J. K. Norskov, 'Theoretical surface science and catalysis-calculations and concepts' Adv. Catal., 45, 71 (2000)   DOI
10 J. Greeley, J. K. Norskov, and M. Mavrikakis, 'Electronic structure and catalysis on metal surfaces' Annu. Rev. Phys. Chem., 53, 319 (2002)   DOI   ScienceOn
11 F. Garin, 'Environmental catalysis' Catal. Today, 89, 255 (2004)   DOI   ScienceOn
12 B. C. Gates and H. Knoezinger, eds., Advances in Catalysis (Volume 45), Academic Press, San Diego (USA), (2000)
13 Y. Xu, A. V. Ruban, and M. Mavrikakis, 'Adsorption and Dissociation of O2 on PtCo and PtFe Alloys' J. Am. Chem. Soc., 126, 4714 (2004)   DOI   ScienceOn
14 R. Wengenmayr and T. Bhrke, Renewable energy :sustainable energy concepts for the future, Wiley-VCH, Weinheim (Germany), (2008)
15 S. Mukerjee, 'Particle size and structural effects in platinum electrocatalysis' J. Appl. Electrochem., 20, 537 (1990)   DOI
16 Nenad M. Markovic, Hubert A. Gasteiger, and Philip N. Ross Jr., 'Oxygen Reduction on Platinum Low-Index Single-Crystal Surfaces in Alkaline Solution: Rotating Ring Disk Pt(hkl) Studies' J. Phys. Chem., 100, 6715 (1996)   DOI   ScienceOn
17 A. B. Anderson and T. V. Albu, 'Catalytic Effect of Platinum on Oxygen Reduction An Ab Initio Model Including Electrode Potential Dependence' J. Electrochem. Soc., 147, 4229, (2000)   DOI   ScienceOn
18 J. K. N$\phi$rskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, and H. Jonsson, 'Origin of the overpotential for oxygen reduction at a fuel-cell cathode' J. Phys. Chem. B, 108, 17886 (2004)   DOI   ScienceOn
19 S. Mukerjee, S. Srinivasan, M. P. Soriaga, and J. McBreen, 'Effect of preparation conditions of Pt alloys on their electronic, structural, and electrocatalytic activities for oxygen reduction-XRD, XAS, and electrochemical studies' J. Phys. Chem., 99, 4577 (1995)   DOI   ScienceOn
20 N. Giordano, E. Passalacqua, L. Pino, A. S. Arico, V. Antonucci, M. Vivaldi, and K. Kinoshita, 'Analysis of platinum particle size and oxygen reduction in phosphoric acid' Electrochim. Acta, 36, 1979 (1991)   DOI   ScienceOn
21 J. Zhang, M. B. Vukmirovic, Y. Xu, M. Mavrikakis, R. R. Adzic, 'Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates' Angew. Chem. Int. Ed., 44, 2132 (2005)   DOI   ScienceOn
22 N. M. Markovic and P. N. Ross In: Wieckowski, Editor, Interfacial Electrochemistry. Theory, Experiment and Applications, Marcel Dekker, New York (USA), (1999)
23 C. Puglia, A. Nilsson, B. Hernns, and O. Karis, P. Bennich, and N. Mrtensson, 'Physisorbed, chemisorbed and dissociated $O_2$ on Pt(111) studied by different core level spectroscopy methods' Sur. Sci., 342, 119 (1995)   DOI   ScienceOn
24 A. W. Edith Chan, Roald Hoffmann, and W. Ho, 'Theoretical aspects of photoinitiated chemisorption, dissociation, and desorption of oxygen on platinum (111)' Langmuir, 8, 1111 (1992)   DOI
25 A. Damjanovic, V. Brusic, and John O'M. Bockris, 'Mechanism of oxygen reduction related to electronic structure of gold-palladium alloy' J. Phys. Chem., 71, 2741 (1967)   DOI
26 J. X. Wang, N. M. Markovic, and R. R. Adzic, 'Kinetic Analysis of Oxygen Reduction on Pt(111) in Acid Solutions: Intrinsic Kinetic Parameters and Anion Adsorption Effects' J. Phys. Chem. B, 108, 4127 (2004)   DOI   ScienceOn
27 R. A. Sidik and A. B. Anderson, 'Density functional theory study of $O_2$ electroreduction when bonded to a Pt dual site' J. Electroanal. Chem., 528, 69 (2002)   DOI   ScienceOn
28 S. J. Clouser, J. C. Huang, and E. Yeager, 'Temperature dependence of the Tafel slope for oxygen reduction on platinum in concentrated phosphoric acid' J. Appl. Electrochem., 23, 597, (1993)   DOI   ScienceOn
29 A. C. Luntz, J. Grimblot, and D. E. Fowler, 'Sequential precursors in dissociative chemisorption: $O_2$ on Pt(111)' Phys. Rev. B, 39, 12903 (1989)   DOI   ScienceOn
30 B. N. Grgur, N. M. Markovi, and P. N. Ross, Jr., 'Underpotential Deposition of Lead on Pt(111) in Perchloric Acid Solution' Langmuir, 13, 6370 (1997)   DOI   ScienceOn
31 K. Wang, H. A. Gasteiger, N. M. Markovic, and P. N. Ross, 'On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces' Electrochim. Acta, 41, 2587 (1996)   DOI   ScienceOn
32 S. Wasmus and A. Kver, 'Methanol oxidation and direct methanol fuel cells: A selective review' J. Electroanal. Chem., 461, 14 (1999)   DOI   ScienceOn
33 C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau, and J.-M. Lger, 'Recent advances in the development of direct alcohol fuel cells (DAFC)' J. Power Sources, 105, 283 (2002)   DOI   ScienceOn
34 M. Watanabe and S. Motoo, 'Electrocatalysis by ad-atoms part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms' J. Electroanal. Chem., 60, 267 (1975)   DOI   ScienceOn
35 E. Antolini, J. R. C. Salgado, and E. R. Gonzalez, 'Carbon supported Pt75M25 (M= Co, Ni) alloys as anode and cathode electrocatalysts for direct methanol fuel cells' J. Electroanal. Chem., 580, 145 (2005)   DOI   ScienceOn
36 A. Damjanovic, M. A. Genshaw, and J. O. M. Bockris, 'The Mechanism of Oxygen Reduction at Platinum in Alkaline Solutions with Special Reference to $H_2O_2$' J. Electrochem. Soc., 114, 1107 (1967)   DOI
37 J. S. Griffith, Pro. R. Soc. London 1956, Ser.A, 23
38 L. Pauling, 'Nature of the Iron-Oxygen Bond in Oxyhae moglobin' Nature, 203, 182 (1964)   ScienceOn
39 A. K. N. Reddy and J. O. M. Bockris, Modern electrochemistry, Plenum Press, New York (USA), (1973)
40 E. Yeager, 'Recent Advances in the Science of Electrocatalysis' J. Electrochem. Soc., 128, 160C (1981)   DOI
41 I. Fishtik, C. A. Callaghan, J. D. Fehribach, and R. Datta, 'A reaction route graph analysis of the electrochemical hydrogen oxidation and evolution reactions' J. Electroanal. Chem., 576, 57 (2005)   DOI   ScienceOn
42 K. Christmann, Electrocatalysis, Wiley-VCH, New York (USA), (1998)
43 A. J. Bard and L. R. Faulkner, Electrochemical methods (Fundamentals and applications), John Wiley & Sons, (2001)
44 (a) J. A. Turner, 'A realizable renewable energy future' Science, 285, 687 (1999)   DOI   ScienceOn
45 (b) L. Schlapbach and A. Zttel, 'Hydrogen-storage materials for mobile applications' Nature, 414, 353 (2001)   DOI   ScienceOn
46 J. Greeley and M. Mavrikakis, 'Alloy catalysts designed from first principles' Nature Mater., 3, 810 (2004)   DOI   ScienceOn
47 S. Dahl, C. J. H. Jacobsen, A. Logadottir, S. Bahn, L. B. Hansen, M. Bollinger, and H. Bengaard, 'Universality in heterogeneous catalysis' J. Catal., 209, 275 (2002)   DOI   ScienceOn
48 S. J. Yoo, H.-Y. Park, T.-Y. Jeon, I.-S. Park, Y.-H. Cho, and Y.-E. Sung, 'Promotional effect of palladium on the hydrogen oxidation reaction at a PtPd alloy electrode' Angew. Chem. Int. Ed., 47, 9307 (2008)   DOI   ScienceOn
49 L. A. Kibler, 'Hydrogen electrocatalysis' Chem Phys Chem, 7, 985 (2006)   DOI   ScienceOn
50 J. Greeley, J. K. N$\phi$rskov, L. A. Kibler, A. M. El-Aziz, and D. M. Kolb, 'Hydrogen evolution over bimetallic systems: Understanding the trends' ChemPhysChem, 7, 1032 (2006)   DOI   ScienceOn
51 J. A. Rodriguez and D. W. Goodman, 'The Nature of the Metal-Metal Bond in Bimetallic Surfaces' Science, 257, 897 (1992)   DOI   ScienceOn
52 F. Buatier de Mongeot, M. Scherer, B. Gleich, E. Kopatzki, and R. J. Behm, 'CO adsorption and oxidation on bimetallic Pt/Ru(0001) surfaces-a combined STM and TPD/TPR study' Surf. Sci., 411, 249 (1998)   DOI   ScienceOn
53 M. Mavrikakis, B. Hammer, and J. K. Norskov, 'Effect of Strain on the Reactivity of Metal Surfaces' Phys. Rev. Lett., 81, 2819 (1998)   DOI   ScienceOn
54 Y. Gauthier, M. Schmid, S. Padovani, E. Lundgren, V. Bu, G. Kresse, J. Redinger, and P. Varga, 'Adsorption Sites and Ligand Effect for CO on an Alloy Surface: A Direct View' Phys. Rev. Lett., 87, 036103 (2001)   DOI   ScienceOn
55 P. Liu and J. K. Norkov, 'Ligand and ensemble effects in adsorption on alloy surfaces' Phys. Chem. Chem. Phys., 3, 3814 (2001)   DOI   ScienceOn
56 D. Tomnek, S. Mukherjee, V. Kumar, and K. H. Bennemann, 'Calculation of chemisorption and absorption induced surface segregation' Surf. Sci., 114, 11 (1982)   DOI   ScienceOn
57 S. C. Fain and J. M. McDavid, 'Work-function variation with alloy composition: Ag-Au' Phys. Rev. B, 9, 5099 (1974)   DOI
58 H. Yamauchi, 'Surface segregation in Jellium binary solid solutions' Phys. Rev. B, 31, 7688 (1985)   DOI   ScienceOn