• 제목/요약/키워드: geomagnetic storm

검색결과 70건 처리시간 0.024초

Two-Ribbon Filament Eruption on 29 September 2013

  • Kim, Yeon-Han;Bong, Su-Chan;Lee, Jaejin;Cho, Il-Hyun;Park, Young-Deuk
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.74.2-74.2
    • /
    • 2014
  • We have presented a classic two-ribbon filament eruption occurred in the east side of NOAA active region 11850 at 21:00 UT on 29 September 2013. Interestingly, this filament eruption was not accompanied by any flares and just there was a slight brightening in X-rays, C1.2, associated with the eruption. An accompanying huge CME was appeared at 22:12 UT in the LASCO C2 field of view and it propagates into the interplanetary space with a speed of about 440 km/s. And the related solar proton event (S2) started at 05:05 UT and peaked at 20:05 UT on 30 September 2013. The CME arrival was recorded by the ACE spacecraft around 01:30 UT on 2 October 2013. Around the CME arrival time, the solar-wind speed reached at about 640 km/s and IMF Bz showed southward component (-27 nT). Finally, the filament eruption and the CME cause geomagnetic storm (G2) at 03:00 UT on 2 October 2013. We described the detailed evolution of the filament eruption and its related phenomena such as CME, proton event, geomegnetic storm and so on. In addition, we will discuss about the activation mechanism of the filament eruption without flares.

  • PDF

지자기폭풍 기간 동안의 태양풍 동압력 펄스에 관한 통계적 분석 (A STATISTICAL ANALYSIS OF SOLAR WIND DYNAMIC PRESSURE PULSES DURING GEOMAGNETIC STORMS)

  • 백지혜;이대영;김경찬;최정림;문용재;조경석;박영득
    • Journal of Astronomy and Space Sciences
    • /
    • 제22권4호
    • /
    • pp.419-430
    • /
    • 2005
  • 이 연구에서는 지자기 폭풍의 주상 기간 동안 발생하는 태양풍 동압력 펄스에 대한 통계적 분석을 하였다. 이를 위해 먼저 1997년부터 2001년까지 5년간의 기간으로부터 지자기 폭풍 지수인 Dst 값이 -50nT 이하인 지자기 폭풍을 모두 111개 얻었다. 이러한 지자기 폭풍의 주상기간 동안에 발생한 태양풍 동압력 펄스를 정확히 조사하기 위해 태양풍 자료 뿐만 아니라 지구 저위도 여러 관측소에서 관측된 지자기 수평 성분 H값을 이용하였다. 즉 동압력 펄스가 자기권에 충돌하면 저위도 H 값이 전 지구적인 증가를 보여야 한다는 사실을 이용하였다. 이러한 과정을 통해 얻은 통계적 결과는 다음과 같다. 첫째, 자기 폭풍 중에 발생하는 H의 증가는 평균적으로 그 크기가 자기 폭풍의 강도와 비례하는 경향을 보인다. 이는 강한 자기폭풍일 수록 강한 태양풍 펄스를 동반한다는 것이다. 둘째로 자기폭풍 중에 발생하는 동압력 펄스의 발생 빈도 역시 자기 폭풍의 강도와 비례한다. 셋째, 동압력 펄스 발생 빈도가 0.4회/hr 이상인, 즉 2.5시간에 1회 이상의 동압력 펄스를 동반하는, 지자기 폭풍은 여기서 다루어진 전체 지자기 폭풍 중 약 $30\%$를 차지한다. 2.5시간은 서브스톰의 평균 지속 시간으로 볼 수 있으며, 따라서 자기 폭풍중에 서브스톰이 연속적으로 발생하는 것 만큼 자주 동압력 펄스가 나타나는 자기폭풍이 전체의 $30\%$라는 것이다. 한편 이러한 동압력 펄스의 기원을 이해하기 위해 먼저 지자기 폭풍 유도체에 대해 조사하였다. 그 결과 여기서 다루어진 지자기 폭풍의 약 $65\%$가 CME(Coronal Mass Ejection)에 의해 발생되었고 CIR(Corotating Interaction Regions)과 Type II bursts에 의해 발생한 것이 각각 6.3, $7.2\%$인 것으로 나타났다. 그런데 CME에 의해 발생된 지자기폭풍 중에서 $70\%$ 이상이 그 주상 기간이 CME와 충격파 사이의 공간인 sheath 영역 혹은 CME 앞부분에 해당되는 것으로 나타났다. 따라서 이들 지자기폭풍 주상기간에 빈번히 발생하는 동압력 펄스는 CME와 충격파 사이의 sheath 영역, 그리고 CME 앞부분 영역에서의 빈번한 태양풍 밀도 증가에 기인하는 것으로 보인다.

A Formula for Calculating Dst Injection Rate from Solar Wind Parameters

  • Marubashi, K.;Kim, K.H.;Cho, K.S.;Rho, S.L.;Park, Y.D.
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2009년도 한국우주과학회보 제18권2호
    • /
    • pp.36.3-37
    • /
    • 2009
  • This is an attempt to improve a formula to predict variations of geomagnetic storm indices (Dst) from solar wind parameters. A formula which is most widely accepted was given by Burton et al. (1975) over 30 years ago. Their formula is: dDst*/dt = Q(t) - Dst*(t)/$\tau$, where Q(t) is the Dst injection rate given by the convolution of dawn-to-dusk electric field generated by southward solar wind magnetic field and some response function. However, they did not clearly specify the response function. As a result, misunderstanding seems to be prevailing that the injection rate is proportional to the dawn-to-dusk electric field. In this study we tried to determine the response function by examining 12 intense geomagnetic storms with minimum Dst < -200 nT for which solar wind data are available. The method is as follows. First we assume the form of response function that is specified by several time constants, so that we can calculate the injection rate Q1(t) from the solar wind data. On the other hand, Burton et al. expression provide the observed injection rate Q2(t) = dDst*/dt + Dst*(t)/$\tau$. Thus, it is possible to determine the time constants of response function by a least-squares method to minimize the difference between Q1(t) and Q2(t). We have found this simple method successful enough to reproduce the observed Dst variations from the corresponding solar wind data. The present result provides a scheme to predict the development of Dst 30 minutes to 1 hour in advance by using the real time solar wind data from the ACE spacecraft.

  • PDF

Statistics of Ionospheric Storms Using GPS TEC Measurements Between 2002 and 2014 in Jeju, Korea

  • Chung, Jong-Kyun;Choi, Byung-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권4호
    • /
    • pp.335-340
    • /
    • 2015
  • Using the Total Electron Content (TEC) data from the Global Navigation Service System (GNSS) site in Jeju, operated by the Korea Astronomy and Space Science Institute (geographic location: $33.3^{\circ}N$, $126.5^{\circ}E$; geomagnetic location: $23.6^{\circ}N$) for 2002-2014 in Korea, the results of the statistical analysis of positive and negative ionospheric storms are presented for the first time. In this paper, ionospheric storms are defined as turbulences that exceed 50% of the percentage differential Global Positioning System (GPS) TEC ratio (${\Delta}TEC$) with monthly median GPS TEC. During the period of observations, the total number of positive ionospheric storms (${\Delta}TEC$ > 50%) was 170, which is greater than five times the number of negative ionospheric storms (${\Delta}TEC$ < - 50%) of 33. The numbers of ionospheric storms recorded during solar cycles 23 and 24 were 134 and 69, respectively. Both positive and negative ionospheric storms showed yearly variation with solar activity during solar cycle 23, but during solar cycle 24, the occurrence of negative ionospheric storms did not show any particular trend with solar activity. This result indicates that the ionosphere is actively perturbed during solar cycle 23, whereas it is relatively quiet during solar cycle 24. The monthly variations of the ionospheric storms were not very clear although there seems to be stronger occurrence during solstice than during equinox. We also investigated the variations of GPS positioning accuracy caused by ionospheric storms during November 7-10, 2004. During this storm period, the GPS positioning accuracies from a single frequency receiver are 3.26 m and 2.97 m on November 8 and 10, respectively, which is much worse than the quiet conditions on November 7 and 9 with the accuracy of 1.54 m and 1.69 m, respectively.

GEOMETRICAL IMPLICATION OF THE CME EARTHWARD DIRECTION PARAMETER AND ITS COMPARISON WITH CONE MODEL PARAMETERS

  • Moon, Y.J.;Kim, R.S.;Cho, K.S.
    • 천문학회지
    • /
    • 제42권2호
    • /
    • pp.27-32
    • /
    • 2009
  • Recently, we suggested a CME earthward direction parameter as an important geoeffective parameter that has been demonstrated by front-side halo CME data. In this study, we present the geometrical implication of this parameter by comparing with the parameters from a CME cone model. Major results from this study can be summarized as follows. First, we derive an analytic relationship between the cone model parameters(the half angular width of a cone and the angle between the cone axis and the plane of sky) and the earthward direction parameter. Second, we demonstrate a close relationship between the earthward direction parameter and the cone axis angle using 32 front-side full halo CMEs. Third, we found that there is noticeable inconsistency between the cone axis angles estimated from the cone model fitting to the CMEs and from their associated flare positions, implying that the flare position should not be considered as a good earthward direction parameter. Finally we present several advantages of our earthward direction parameter in terms of the forecast of a geomagnetic storm based on CME parameters.

Dependence of Energetic Electron Precipitation on the Geomagnetic Index Kp and Electron Energy

  • Park, Mi-Young;Lee, Dae-Young;Shin, Dae-Kyu;Cho, Jung-Hee;Lee, Eun-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권4호
    • /
    • pp.247-253
    • /
    • 2013
  • It has long been known that the magnetospheric particles can precipitate into the atmosphere of the Earth. In this paper we examine such precipitation of energetic electrons using the data obtained from low-altitude polar orbiting satellite observations. We analyze the precipitating electron flux data for many periods selected from a total of 84 storm events identified for 2001-2012. The analysis includes the dependence of precipitation on the Kp index and the electron energy, for which we use three energies E1 > 30 keV, E2 > 100 keV, E3 > 300 keV. We find that the precipitation is best correlated with Kp after a time delay of < 3 hours. Most importantly, the correlation with Kp is notably tighter for lower energy than for higher energy in the sense that the lower energy precipitation flux increases more rapidly with Kp than does the higher energy precipitation flux. Based on this we suggest that the Kp index reflects excitation of a wave that is responsible for scattering of preferably lower energy electrons. The role of waves of other types should become increasingly important for higher energy, for which we suggest to rely on other indicators than Kp if one can identify such an indicator.

Development of Forecast Algorithm for Coronal Mass Ejection Speed and Arrival Time Based on Propagation Tracking by Interplanetary Scintillation g-Value

  • Park, Sa-Rah;Jeon, Ho-Cheol;Kim, Rok-soon;Kim, Jong-Hyeon;Kim, Seung-Jin;Cho, Junghee;Jang, Soojeong
    • Journal of Astronomy and Space Sciences
    • /
    • 제37권1호
    • /
    • pp.43-50
    • /
    • 2020
  • We have developed an algorithm for tracking coronal mass ejection (CME) propagation that allows us to estimate CME speed and its arrival time at Earth. The algorithm may be used either to forecast the CME's arrival on the day of the forecast or to update the CME tracking information for the next day's forecast. In our case study, we successfully tracked CME propagation using the algorithm based on g-values of interplanetary scintillation (IPS) observation provided by the Institute for Space-Earth Environmental Research (ISEE). We were able to forecast the arrival time (Δt = 0.30 h) and speed (Δv = 20 km/s) of a CME event on October 2, 2000. From the CME-interplanetary CME (ICME) pairs provided by Cane & Richardson (2003), we selected 50 events to evaluate the algorithm's forecast capability. Average errors for arrival time and speed were 11.14 h and 310 km/s, respectively. Results demonstrated that g-values obtained continuously from any single station observation were able to be used as a proxy for CME speed. Therefore, our algorithm may give stable daily forecasts of CME position and speed during propagation in the region of 0.2-1 AU using the IPS g-values, even if IPS velocity observations are insufficient. We expect that this algorithm may be widely accepted for use in space weather forecasting in the near future.

Observation of long-term disappearance and reappearance of the outer radiation belt

  • 이대영;신대규;김경찬;김진희;조정희;박미영;;황정아;이용희;김경호
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.115.2-115.2
    • /
    • 2012
  • In this study we have used the data of various instruments onboard the THEMIS spacecraft to study the characteristics of the outer radiation belt during the ascending phase of solar cycle 24. The most astonishing result is that we discovered four long-term (a month or so) periods during which the belt has nearly disappeared. The first disappearance started late 2008, followed by reappearance in ~a month, and three more similar events repeated until early 2010 when the belt has reappeared. This is well revealed at 719 keV electrons, which is the currently available uppermost energy channel from the THEMIS SST observation, but also seen at even lower energies. Overall consistent features were confirmed using the NOAA-POES observations. The vanished belt periods are associated with extremely weak solar wind conditions, low geomagnetic disturbances (in terms of Kp and AE/AL), greatly suppressed wave (ULF and chorus) activities, greatly reduced storm and substorm activities (little source particle supply), and expanded plasmapause locations. The direct observations of such events shed light on the fundamental question of the origin of the radiation belt, which is the main focus of our presentation.

  • PDF

Scientific Missions and Technologies of the ISSS on board the NEXTSat-1

  • Choi, Cheong Rim;Sohn, Jongdae;Lee, Jun-Chan;Seo, Yong Myung;Kang, Suk-Bin;Ham, Jongwook;Min, Kyoung-Wook;Seon, Jongho;Yi, Yu;Chae, Jang-Soo;Shin, Goo-Hwan
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권1호
    • /
    • pp.73-81
    • /
    • 2014
  • A package of space science instruments, dubbed the Instruments for the Study of Space Storms (ISSS), is proposed for the Next Generation Small Satellite-1 (NEXTSat-1), which is scheduled for launch in May 2016. This paper describes the instrument designs and science missions of the ISSS. The ISSS configuration in NEXTSat-1 is as follows: the space radiation monitoring instruments consist of medium energy particle detector (MEPD) and high energy particle detector (HEPD); the space plasma instruments consist of a Langmuir probe (LP), a retarding potential analyzer (RPA), and an ion drift meter (IDM). The space radiation monitoring instruments (MEPD and HEPD) measure electrons and protons in parallel and perpendicular directions to the geomagnetic field in the sub-auroral region, and they have a minimum time resolution of 50 msec for locating the region of the particle interactions with whistler mode waves and electromagnetic ion cyclotron (EMIC) waves. The MEPD measures electrons and protons with energies of tens of keV to ~400 keV, and the HEPD measures electrons with energies of ~100 keV to > ~1 MeV and protons with energies of ~10 MeV. The space plasma instruments (LP, RPA, and IDM) observe irregularities in the low altitude ionosphere, and the results will be compared with the scintillations of the GPS signals. In particular, the LP is designed to have a sampling rate of 50 Hz in order to detect these small-scale irregularities.

A Substorm Injection Event and the Radiation Belt Structure Observed by Space Radiation Detectors onboard Next Generation Small Satellite-1 (NEXTSat-1)

  • Yoo, Ji-Hyeon;Lee, Dae-Young;Kim, Eojin;Seo, Hoonkyu;Ryu, Kwangsun;Kim, Kyung-Chan;Min, Kyoungwook;Sohn, Jongdae;Lee, Junchan;Seon, Jongho;Kang, Kyung-In;Lee, Seunguk;Park, Jaeheung;Shin, Goo-Hwan;Park, SungOg
    • Journal of Astronomy and Space Sciences
    • /
    • 제38권1호
    • /
    • pp.31-38
    • /
    • 2021
  • In this paper, we present observations of the Space Radiation Detectors (SRDs) onboard the Next Generation Small Satellite-1 (NEXTSat-1) satellite. The SRDs, which are a part of the Instruments for the study of Stable/Storm-time Space (ISSS), consist of the Medium-Energy Particle Detector (MEPD) and the High-Energy Particle Detector (HEPD). The MEPD can detect electrons, ions, and neutrals with energies ranging from 20 to 400 keV, and the HEPD can detect electrons over an energy range from 0.35 to 2 MeV. In this paper, we report an event where particle flux enhancements due to substorm injections are clearly identified in the MEPD A observations at energies of tens of keV. Additionally, we report a specific example observation of the electron distributions over a wide energy range in which we identify electron spatial distributions with energies of tens to hundreds of keV from the MEPD and with energy ranging up to a few MeV from the HEPD in the slot region and outer radiation belts. In addition, for an ~1.5-year period, we confirm that the HEPD successfully observed the well-known outer radiation belt electron flux distributions and their variations in time and L shell in a way consistent with the geomagnetic disturbance levels. Last, we find that the inner edge of the outer radiation belt is mostly coincident with the plasmapause locations in L, somewhat more consistent at subrelativistic energies than at relativistic energies. Based on these example events, we conclude that the SRD observations are of reliable quality, so they are useful for understanding the dynamics of the inner magnetosphere, including substorms and radiation belt variations.