• Title/Summary/Keyword: geological weak zone

Search Result 31, Processing Time 0.056 seconds

The Development of Technique for the Visualization of Geological Information Using Geostatistics (지구통계학을 활용한 지반정보 가시화 기법 개발)

  • 송명규;김진하;황제돈;김승렬
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.501-508
    • /
    • 2001
  • A graph or topographic map can often convey larger amounts of information in a shorter time than ordinary text-based methods. To visualize information precisely it is necessary to collect all the geological information at design stage, but actually it is almost impossible to bore or explore the entire area to gather the required data. So, tunnel engineers have to rely on the judgement of expert from the limited number of the results of exploration and experiment. In this study, several programs are developed to handle the results of geological investigation with various data processing techniques. The results of the typical case study are also presented. For the electric survey, eleven points are chosen at the valley to measure the resistivity using Schlumberger array. The measured data are interpolated in 3-dimensional space by kriging and the distribution of resistivity are visualized to find weak or fractured zone. The correlation length appears to be around 5 to 20 meter in depth. Regression analyses were performed to find a correlation length. No nugget effect is assumed, and the topographic map, geologic formation, fault zone, joint geometry and the distribution of resistivity are successfully visualized by using the proposed technique.

  • PDF

Distribution of Resistivity Zones Near Nari Caldera, Ulleung-do, Korea, Inferred from Modified Dipole Arrays (변형 쌍극자배열법을 적용한 울릉도 나리 칼데라 주변 조면안산암 지역의 비저항분포 특성 분석)

  • Kim, Ki-Beom;Kim, Man-Il
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.223-236
    • /
    • 2019
  • Resistivity surveys can identify the distribution of geological units and structures (including fragmented fault zones), the extent of weathered and modified geological strata, and the characteristics of groundwater. This study aims to analyze the underground sedimentary layers and geological structures near the Nari and Albong Basins of Ulleung-do, Korea, focusing on six survey lines to identify the spatial trends in subsurface resistivity. A modified dipole array method (D method) was employed, combining resistivity results obtained by existing dipole array methods (A and C methods). The modified method provides optimal analysis of the cross-section of underground resistivity, and shows a clear boundary between a low-resistivity zone (${\leq}500{\Omega}{\cdot}m$) of sedimentary layers and weak zones, and a high-resistivity zone (${\geq}5,000{\Omega}{\cdot}m$) of volcanic rock (trachyandesite). The estimated average thickness of the sedimentary layers is 50~100 m for the Albong Basin and 100~200 m for the Nari Basin. An anomaly zone, different from the weak zone in the bedrock, is identified as a caldera fault, and the low-resistivity zone extends from the surface down to the lowest survey depths.

Delineation of Geological Weak Zones in an Area of Small-scale Landslides Using Correlation between Electrical Resistivity, Bore, and Well-logging Data (전기비저항 및 시추·검층자료의 상관해석을 통한 소규모 산사태 지역의 지질 연약대 파악)

  • Lee, Sun-Joong;Kang, Yu-Gyeong;Lee, Cheol-Hee;Jeon, Su-In;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.30 no.1
    • /
    • pp.31-42
    • /
    • 2020
  • Electrical resistivity and downhole seismic surveys were conducted together with bore investigations and well-logging to examine subsurface structures in small-scale landslides at Sinjindo-ri, Geunheung-myeon, Taean-gun, Chungcheongnam-do, Republic of Korea in 2014. On the basis of the low N-values at depths of 5~7 m in borehole BH-2, downhole seismic and electrical dipole-dipole resistivity surveys were performed to delineate geological weak zones. The low-resistivity zones (<150 Ω·m) measure ~8 m in thickness and show a close depth correspondence to weathered soils consisting mainly of silty clays as identified from the bore investigations and well-logging data. Compared with weak zones in borehole BH-1, weak zones in BH-2 are characterized by lower densities (1.6~1.8 g/㎤) and resistivities (<150 Ω·m) and greater variation in Poisson's ratio. These observations can be explained by the presence of wet silty clays rich in weathered soil material that have resulted from heavy rainfall and rises in groundwater level. Downslope movements are probably caused by the sliding of wet clay that acts to reduce the strength of the weathered soil.

Numerical Analysis on the Effect of Heterogeneous/Anisotropic Nature of Rock Masses on Displacement Behavior of Tunnel (비균질/이방성 암반에서의 터널 거동 분석을 위한 수치해석적 연구)

  • Baek, Seung-Han;Kim, Chang-Yong;Kim, Kwang-Yeom;Hong, Sung-Wan;Moon, Hyun-Koo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.939-948
    • /
    • 2006
  • The structural anisotropy and heterogeneity of rock mass, caused by discontinuities and weak zones, have a great influence on the deformation behavior of tunnel. Tunnel construction in these complex ground conditions is very difficult. No matter how excellent a geological investigation is, local uncertainties of rock mass conditions still remain. Under these uncertain circumstances, an accurate forecast of the ground conditions ahead of the advancing tunnel face is indispensable to safe and economic tunnel construction. This paper presents the effect of anisotropy and heterogeneity of the rock masses to be excavated by numerical analysis. The influences of distance from weak zone, the size or dimension, the different stiffness and the orientation of weak zones are analysedby 2-D and 3-D finite element analysis. By analysing these numerical results, the tunnel behavior due to excavation can be well understood and the prediction of rock mass condition ahead of tunnel face can be possible.

  • PDF

Study on the water bursting law and spatial distribution of fractures of mining overlying strata in weakly cemented strata in West China

  • Li, Yangyang;Zhang, Shichuan;Yang, Yingming;Chen, Hairui;Li, Zongkai;Ma, Qiang
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.613-624
    • /
    • 2022
  • A study of the evolution of overburden fractures under the solid-fluid coupling state was conducted based on the geological and mining characteristics of the coal seam depth, weak strata cementation, and high-intensity mining in the mining areas of West China. These mining characteristics are key to achieving water conservation during mining or establishing groundwater reservoirs in coal mines. Based on the engineering background of the Daliuta Coal Mine, a non-hydrophilic simulation material suitable for simulating the weakly cemented rock masses in this area was developed, and a physical simulation test was carried out using a water-sand gushing test system. The study explored the spatial distribution and dynamic evolution of the fractured zone in the mining overburden under the coupling of stress and seepage. The experimental results show that the mining overburden can be vertically divided into the overall migration zone, the fracture extension zone and the collapse zone; additionally, in the horizontal direction, the mining overburden can be divided into the primary fracture zone, periodic fracture zone, and stop-fracture zone. The scope of groundwater flow in the overburden gradually expands with the mining of coal seams. When a stable water inrush channel is formed, other areas no longer generate new channels, and the unstable water inrush channels gradually close. Finally, the primary fracture area becomes the main water inrush channel for coal mines. The numerical simulation results indicate that the overlying rock breaking above the middle of the mined-out area allows the formation of the water-conducting channel. The water body will flow into the fracture extension zone with the shortest path, resulting in the occurrence of water bursting accidents in the mining face. The experimental research results provide a theoretical basis for the implementation of water conservation mining or the establishment of groundwater reservoirs in western mining areas, and this theoretical basis has considerable application and promotion value.

Delineation of the Slip Weak Zone of Land Creeping with Integrated Geophysical Methods and Slope Stability Analysis (복합 지구물리탐사와 사면 안정해석 자료를 이용한 땅밀림 지역의 활동연약대 파악)

  • Lee, Sun-Joong;Kim, Ji-Soo;Kim, Kwan-Soo;Kwon, Il-Ryong
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.289-302
    • /
    • 2020
  • To determine the shallow subsurface structure and sliding surface of land creeping in 2016 at Hadong-gun, Gyeongsangnam-do, geophysical surveys (electric resistivity, and refraction seismic methods, borehole televiewer) and slope stability analysis were conducted. The subsurface structure delineated with borehole lithologies and seismic velocity structures provided the information that the sediment layer on the top of the slope was rather as thick as 20 m and the underlying weathered rock (anorthosite) was thinner than 1 m. Based on the tension cracks observed during the geological mapping, televiewer scanning was performed at the borehole BH-2 and detected the intensive fracture zones at the ground-water level, associated with the slip weak zones mapped in dipole-dipole electrical resistivity section. Downslope sliding and slightly upward pushing at the apex of high resistive bedrock explains the curved slip plane of the land creeping. Such a convex structure might play a role of natural toe abutment for preventing the downward development of slip weak zones. In slope stability analysis, the safety factors of the slip weak zone are calculated with varying the groundwater levels for dry and rainy seasons and the downslope is founded to be unstable with safety factor of 0.89 due to fully saturated material in rainy season.

Deformation characteristics of tunnel bottom after construction under geological conditions of long-term deformation

  • Kim, Nag-Young;Park, Du-Hee;Jung, Hyuk-Sang;Kim, Myoung-Il
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.171-178
    • /
    • 2020
  • Mountainous areas cover more than 70% of Korea. With the rapid increase in tunnel construction, tunnel-collapse incidents and excessive deformation are occurring more frequently. In addition, longer tunnel structures are being constructed, and geologically weaker ground conditions are increasingly being encountered during the construction process. Tunnels constructed under weak ground conditions exhibit long-term deformation behavior that leads to tunnel instability. This study analyzes the behavior of the bottom region of tunnels under geological conditions of long-term deformation. Long-term deformation causes various types of damage, such as cracks and ridges in the packing part of tunnels, as well as cracks and upheavals in the pavement of tunnels. We observed rapid tunnel over-displacement due to the squeezing of a fault rupture zone after the inflow of a large amount of groundwater. Excessive increments in the support member strength resulted in damage to the support and tunnel bottom. In addition, upward infiltration pressure on the tunnel road was found to cause severe pavement damage. Furthermore, smectite (a highly expandable mineral), chlorite, illite, and hematite, were also observed. Soil samples and rock samples containing clay minerals were found to have greater expansibility than general soil samples. Considering these findings, countermeasures against the deformation of tunnel bottoms are required.

Crossplot Interpretation of Electrical Resistivity and Seismic Velocity Values for Mapping Weak Zones in Levees (제방의 취약구간 파악을 위한 전기비저항과 탄성파속도의 교차출력 해석)

  • Cho, Kyoung-Seo;Kim, Jeong-In;Kim, Jong-Woo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.507-522
    • /
    • 2021
  • Specific survey objectives often cannot be met using only one geophysical method, as each method's results are influenced by the specific physical properties of subsurface materials. In particular, areas susceptible to geological hazards require investigation using more than one method in order to reduce risks to life and property. Instead of analyzing the results from each method separately, this work develops a four-quadrant criterion for classifying areas of levees as safe or weak. The assessment is based on statistically determined thresholds of seismic velocity (P-wave velocity from seismic refraction and S-wave velocity from multichannel analysis of surface waves) and electrical resistivity. Thresholds are determined by subtracting the standard deviation from the mean during performance testing of this correlation technique applied to model data of four horizontal and inclined fracture zones. Compared with results from the crossplot of resistivity and P-wave velocity, crossplot analysis using resistivity and S-wave velocity data provides more reliable information on the soil type, ground stiffness, and lithological characteristics of the levee system. A loose and sandy zone (represented by low S-wave velocity and high resistivity) falling within the second quadrant is interpreted to be a weak zone. This interpretation is well supported by the N values from standard penetrating test for the central core.

Geotechnical characteristics of the collapsed $\bigcirc\bigcirc$tunnel slope in Yeosu-Suncheon area (여수-순천 도로확장공사 구간 $\bigcirc\bigcirc$터널 붕괴사면 지반특성)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Lee, Jeong-Yup;Rhee, Jong-Hyun;Kim, Seung-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.848-857
    • /
    • 2008
  • In September 2007, the collapses of slopes and landslides are happened at Jeonlanamdo due to heavy rains accompanied with Typoon "Nari". The study area is the tunnel portal slope in new road construction site. This slope consists of pyroclastic rocks and has lots of faults. Particularly, the residual soils of the slope is deteriorated with yellowish mudstone layer as a results of chemical and physical weathering. This has a variety of swelling clay minerals and might be moved easily down at the gentle terrain. The inner factor of $\bigcirc\bigcirc$tunnel portal slope's collapse is the geological weak zone, the convergent topography, the inferiority of drainage and the heavy rain act on the failure as direct trigger.

  • PDF

Development of an In Situ Direct Shear Test Apparatus and Its Field Application (현장직접전단시험기의 개발 및 현장적용에 관한 연구)

  • Kim, Yong-Phil;Lee, Young-Kyun;Lee, Sung-Kook;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.181-191
    • /
    • 2011
  • It is very difficult to prepare a lab. test specimen from weak rock masses affected by faults, highly fractured zone or weathered zone. In conventional method of in situ direct shear test a rock block is sheared inside galleries, where reactions for the hydraulic jacks are available. A new in situ direct shear test apparatus has been developed in this study to perform the test inside galleries as well as open pit conditions. The apparatus is composed of normal and shear reaction plates including load transfer plates, hydraulic cylinder systems, load cells, multistage shear boxes with fixing devices, and needle rollers. Maximum size of the test block is $400{\times}400{\times}460$ mm, and procedures of the test block preparation has been suggested. To explore the field applicability of in situ direct shear test apparatus, proper test block site was investigated by extensive geological field survey. In situ direct shear test has been successful in producing most of information related to strength and deformability of the weak rock.