• Title/Summary/Keyword: geological storage

Search Result 142, Processing Time 0.051 seconds

Numerical Analysis of Phase Behavior and Flow Properties in an Injection Tubing during Gas Phase CO2 Injection : Application of Demonstration-scale Offshore CO2 Storage Project in the Pohang Basin, Korea (기체상태의 CO2 주입시 주입관내 상변화 및 유동 특성의 수치해석적 연구 : 포항분지 해상 중소규모 CO2 지중저장 사업에 적용)

  • Jung, Woodong;Sung, Wonmo;Han, Jeong-Min;Song, Youngsoo;Wang, Jihoon
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.10-18
    • /
    • 2021
  • CO2 storage technology in an aquifer is one of the most effective way to decrease global warming due to a high storage capacity and economics. A demonstration-scale offshore CO2 storage project was performed in a geological deep aquifer in the Pohang Basin, Korea for a technological development of large-scale CO2 storage. A challenging issue in the early design stage of the project was to establish the proper injectivity during CO2 injection. To solve this issue, injection conditions were calculated by calculating injection rate, pressure, temperature, CO2 phase change, and thermodynamic properties. For this study, we simulated and numerically analyzed CO2 phase change from gas to supercritical phase and flow behavior in transport piping and injection tubing using OLGA program. Our results provide the injectivity conditions of CO2 injection system combined with a bottomhole pressure of an aquifer.

Multiresolution 4- 8 Tile Hierarchy Construction for Realtime Visualization of Planetary Scale Geological Information (행성 규모 지리 정보의 실시간 시각화를 위한 다계층 4-8 타일 구조의 구축)

  • Jin, Jong-Wook;Wohn, Kwang-Yun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.12-21
    • /
    • 2006
  • Recently, Very large and high resolution geological data from aerial or satellite imagery are available. Many researches and applications require to do realtime visualization of interest geological area or entire planet. Important operation of wide-spreaded terrain realtime visualization technique is the appropriate model resolution selection from pre-processed multi-resolution model hierarchy depend upon participant's view. For embodying such realtime rendering system with large geometric data, Preprocessing multi-resolution hierarchy from large scale geological information of interest area is required. In this research, recent Cubic multiresolution 4-8 tile hierarchy is selected for global planetary applications. Based upon the tile hierarchy, It constructs the selective terminal level tile mesh for original geological information area and starts to sample individual generated tiles for terminal level tiles. It completes the hierarchy by constructing intermediate tiles with low pass filtering in bottom-up direction. This research embodies series of efficient cubic 4-8 tile hierarchy construction mechanism with out-of-core storage. The planetary scale Mars' geographical altitude data and image data were selected for the experiment.

  • PDF

Geoscientific Research of Bedrock for HLW Geological Disposal using Deep Borehole (고준위방사성폐기물 심층처분을 위한 심부 시추공을 활용한 암반의 지구과학적 조사 )

  • Dae-Sung, Cheon;Won-Kyong, Song;You Hong, Kihm;Seungbeom, Choi;Seong Kon, Lee;Sung Pil, Hyun;Heejun, Suk
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.435-450
    • /
    • 2022
  • In step-by-step site selection for geological disposal of high-level radioactive waste, parameters necessary for site selection will be acquired through deep drilling surveys from the basic survey stage. Unlike site investigations of rock mass structures such as tunnels and underground oil storage facilities, those related to the geological disposal of high-level radioactive waste are not only conducted in relatively deep depths, but also require a high level of quality control. In this report, based on the 750 m depth drilling experience conducted to acquire the parameters necessary for deep geological disposal, the methodology for deep drilling and the geology, geophysics, geochemistry, hydrogeology and rock mechanics obtained before, during, and after deep drilling are discussed. The procedures for multidisciplinary geoscientific investigations were briefly described. Regarding in-situ stress, one of the key evaluation parameter in the field of rock engineering, foreign and domestic cases related to the geological disposal of high-level radioactive waste were presented, and variations with depth were presented, and matters to be considered or agonized in acquiring evaluation parameters were mentioned.

A Numerical Study on the CO2 Leakage Through the Fault During Offshore Carbon Sequestration (해양지중에 저장된 이산화탄소의 단층을 통한 누출 위험 평가에 관한 수치해석 연구)

  • Kang, Kwangu;Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.94-101
    • /
    • 2015
  • To mitigate the greenhouse gas emission, many carbon capture and storage projects are underway all over the world. In Korea, many studies focus on the storage of $CO_2$ in the offshore sediment. Assurance of safety is one of the most important issues in the geological storage of $CO_2$. Especially, the assessment of possibility of leakage and amount of leaked $CO_2$ is very crucial to analyze the safety of marine geological storage of $CO_2$. In this study, the leakage of injected $CO_2$ through fault was numerically studied. TOUGH2-MP ECO2N was used to simulate the subsurface behavior of injected $CO_2$. The storage site was 150 m thick saline aquifer located 825 m under the continental shelf. It was assumed that $CO_2$ leak was happened through the fault located 1,000 m away from the injection well. The injected $CO_2$ could migrate through the aquifer by both pressure difference driven by injection and buoyancy force. The enough pressure differences made it possible the $CO_2$ to migrate to the bottom of the fault. The $CO_2$ could be leaked to seabed through the fault due to the buoyancy force. Prior to leakage of the injected $CO_2$, the formation water leaked to seabed. When $CO_2$ reached the seabed, leakage of formation water stopped but the same amount of sea water starts to flow into the underground as the amount of leaked $CO_2$. To analyze the effect of injection rate on the leakage behavior, the injection rate of $CO_2$ was varied as 0.5, 0.75, and $1MtCO_2/year$. The starting times of leakage at 1, 0.75 and $0.5MtCO_2/year$ injection rates are 11.3, 15.6 and 23.2 years after the injection, respectively. The leakage of $CO_2$ to the seabed continued for a period time after the end of $CO_2$ injection. The ratios of total leaked $CO_2$ to total injected $CO_2$ at 1, 0.75 and $0.5MtCO_2/year$ injection rates are 19.5%, 11.5% and 2.8%, respectively.

Flood Discharge to Decision of Parameters in Han Stream Watershed (한천유역의 홍수량 산정을 위한 HEC-HMS 모형의 민감도 분석)

  • Jung, Woo-Yul;Yang, Sung-Kee;Kim, Dong-Su
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.533-541
    • /
    • 2014
  • The streams in Jeju Island have very distinctive hydrological and geological properties and there are a lot of limits in applying the general flood estimation method. This study presented parameters dominant in the Hancheon stream of Jeju Island by analyzing the sensitivity of parameters of HEC-HMS model regarding rainfall events in the target basin, and extracted the optimal parameter(Time of Concentration of Clark Unit Hydrograph: Kraven II method, Storage Coefficient: Sabol method) by analyzing and comparing it with the flood runoff data observed in the site and Jeju Island's observation data.

Geological analysis of the CarbonNet CCS project in the Gippsland Basin, Australia (호주 깁스랜드 분지 CarbonNet CCS 프로젝트의 지질학적 분석)

  • Hyun-Wook Jo;Ju-Won Oh;Young-Ju Lee;Ah-Reum Han;Jae-Young Lee
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.157-170
    • /
    • 2023
  • In South Korea, carbon capture and storage (CCS) techniques have attracted considerable attention as part of efforts to achieve the 2030 Korean Nationally Determined Contribution. However, owing to delays in large-scale CCS projects in South Korea, interest in cross-border CCS projects, wherein CO2 captured in South Korea is stored in overseas CCS facilities, has increased. In this study, we investigated the development status of the CarbonNet project in the Gippsland Basin, Australia. First, we provide a brief overview of sedimentary basins and CCS projects in Australia. Subsequently, we review the geological history of the Gippsland Basin, the site of the large-scale CCS project. Finally, we summarize the site selection process for the CarbonNet project and discuss the suitability of the Pelican site for large-scale CCS projects.

Analysis of Properties Influencing CO2 Transport Using a Pipeline and Visualization of the Pipeline Connection Network Design: Korean Case Study

  • Lee, Ji-Yong
    • International Journal of Contents
    • /
    • v.13 no.1
    • /
    • pp.45-52
    • /
    • 2017
  • Carbon Capture and Storage (CCS) technologies involve three major stages, i.e., capture, transport, and storage. The transportation stage of CCS technologies has received relatively little attention because the requirements for $CO_2$ transport differ based on the industry-related conditions, geological, and demographical characteristics of each country. In this study, we analyzed the properties of $CO_2$ transport using a pipeline. This study has important implications for ensuring the stability of a long-term CCS as well as the large cost savings, as compared to the small cost ratio as a percentage of the entire CCS system. The state of $CO_2$, network topologies, and node distribution are among the major factors that influence $CO_2$ transport via pipelines. For the analysis of the properties of $CO_2$ transport using a pipeline, the $CO_2$ pipeline connections were visualized by the simulator developed by Lee [11] based on the network topologies in $CO_2$ transport. The case of Korean CCS technologies was applied to the simulation.

Effect Assessment and Derivation of Ecological Effect Guideline on CO2-Induced Acidification for Marine Organisms (이산화탄소 증가로 인한 해수 산성화가 해양생물에 미치는 영향평가 및 생태영향기준 도출)

  • Gim, Byeong-Mo;Choi, Tae Seob;Lee, Jung-Suk;Park, Young-Gyu;Kang, Seong-Gil;Jeon, Ei-Chan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.153-165
    • /
    • 2014
  • Carbon dioxide capture and storage (CCS) technology is recognizing one of method responding the climate change with reduction of carbon dioxide in atmosphere. In Korea, due to its geological characteristics, sub-seabed geological $CO_2$ storage is regarded as more practical approach than on-land storage under the goal of its deployment. However, concerns on potential $CO_2$ leakage and relevant acidification issue in the marine environment can be an important subject in recently increasing sub-seabed geological $CO_2$ storage sites. In the present study effect data from literatures were collected in order to conduct an effect assessment of elevated $CO_2$ levels in marine environments using a species sensitivity distribution (SSD) various marine organisms such as microbe, crustacean, echinoderm, mollusc and fish. Results from literatures using domestic species were compared to those from foreign literatures to evaluate the reliability of the effect levels of each biological group and end-point. Ecological effect guidelines through estimating level of pH variation (${\delta}pH$) to adversely affect 5 and 50% of tested organisms, HC5 and HC50, were determined using SSD of marine organisms exposed to the $CO_2$-induced acidification. Estimated HC5 as ${\delta}pH$ of 0.137 can be used as only interim quality guideline possibly with adequate assessment factor. In the future, the current interim guideline as HC5 of ${\delta}pH$ in this study will look forward to compensate with supplement of ecotoxicological data reflecting various trophic levels and indigenous species.

Feasibility of Mineral Carbonation Technology as a $CD_{2}$ Storage Measure Considering Domestic Industrial Environment (국내 산업 여건을 고려한 $CD_{2}$ 저장 방안으로서 광물 탄산화 기술의 타당성)

  • Han, Kun-Woo;Rhee, Chang-Houn;Chun, Hee-Dong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.137-150
    • /
    • 2011
  • $CO_{2}$ mineral carbonation technology, fixation technology of $CO_{2}$ as carbonates, is considered to be an alternative to the $CO_{2}$ geological storage technology, which can perform small- or medium-scale $CO_{2}$ storage. We provide the current R&D status of the mineral carbonation with special emphasis on the technical and economical feasibility of $CO_{2}$ mineral carbonation taken into consideration of the domestic geological and industrial environment. Given that the domestic industry produces relatively large amount of the industrial by-products, it is expected that the technology play a pivotal role on the $CO_{2}$ reduction countermeasure, reaching the potential storage capacity to 12Mt-$CO_{2}$/yr. The economics of the overall process should be improved via the development of advanced technologies on the pretreatment of raw materials, method/solvents for metal extraction, enhanced kinetics of carbonation reactions, heat integration, and the production of highly value-added carbonates.

Research for development of small format multi -spectral aerial photographing systems (PKNU 3) (소형 다중분광 항공촬영 시스템(PKNU 3호) 개발에 관한 연구)

  • 이은경;최철웅;서영찬;조남춘
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.143-152
    • /
    • 2004
  • Researchers seeking geological and environmental information, depend on remote sensing and aerial photographic datum from various commercial satellites and aircraft. However, adverse weather conditions as well as equipment expense limit the ability to collect data anywhere and anytime. To allow for better flexibility in geological and environmental data collection, we have developed a compact, multi-spectral automatic Aerial Photographic system (PKNU2). This system's Multi-spectral camera can record visible (RGB) and infrared (NIR) band (3032*2008 Pixels) images Visible and infrared band images were obtained from each camera respectively and produced color-infrared composite images to be analyzed for the purpose of the environmental monitoring. However this did not provide quality data. Furthermore, it has the disadvantage of having the stereoscopic overlap area being 60% unsatisfied due to the 12 seconds of storage time of each data The PKNU2 system in contrast, photographed photos of great capacity Thus, with such results, we have been proceeding to develop the advanced PKNU2 (PKNU3) system that consists of a color-infrared spectral camera that can photograph in the visible and near-infrared bands simultaneously using a single sensor, a thermal infrared camera, two 40G computers to store images, and an MPEG board that can compress and transfer data to the computer in real time as well as be able to be mounted onto a helicopter platform.

  • PDF