• Title/Summary/Keyword: geological properties

Search Result 393, Processing Time 0.034 seconds

Physical and Chemical Properties of Soil in Jang-San Wetland, Busan Metropolitan City (부산시 장산습지 토양의 물리적 및 화학적 특성)

  • Cha, Eun-Jee;Hamm, Se-Yeong;Kim, Hyun-Ji;Lee, Jeong-Hwan;Ok, Soon-Il
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1363-1374
    • /
    • 2010
  • This study examined the physical and chemical properties of soil in Jang-San wetland in Busan Metropolitan City. The wetland covers wide and flat area comparing to its outside. The samples of the wetland soil were collected and analyzed in order to identify the profiles and chemical properties. According to the analyses of soil moisture and particle size distribution, the wetland soil mostly belongs to sandy loam with the soil moistures of 14.9-153.2%. The soil profiles are configured with O, A, B, and C horizons from the land surface. The organic matter content (2.38-16.7%) at most sampling locations decreases downwardly with the highest at 0-20 cm depth. The organic matter content has a good positive relationship with soil moisture content. According to X-ray diffraction analysis, the wetland soils contain quartz and feldspar (the main components of rhyolite porphyry) as well as montmorillonite, gibbsite, and kaolinite (the weathered products of feldspar). The wetland soil displays the highest iron concentration (average 22,052 mg/kg), indicating oxidation of iron. High concentrations of potassium (average 17,822 mg/kg) and sodium (average 5,394 mg/kg) originate from the weathering of feldspar. Among anions, sulfate concentration is highest with average 9.21 mg/kg that may originate from sulfate minerals and atmosphere.

Synthetic Study on the Geological and Hydrogeological Model around KURT (KURT 주변 지역의 지질모델-수리지질모델 통합 연구)

  • Park, Kyung-Woo;Kim, Kyung-Su;Koh, Yong-Kwon;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.1
    • /
    • pp.13-21
    • /
    • 2011
  • To characterize the site specific properties of a study area for high-level radioactive waste disposal research in KAERI, the several geological investigations such as surface geological surveys and borehole drillings were carried out since 1997. Especially, KURT (KAERI Underground Research Tunnel) was constructed to understand the further study of geological environments in 2006. As a result, the first geological model of a study area was constructed by using the results of geological investigation. The objective of this research is to construct a hydrogeological model around KURT area on the basis of the geological model. Hydrogeological data which were obtained from in-situ hydraulic tests in the 9 boreholes were estimated to accomplish the objective. And, the hydrogeological properties of the 4 geological elements in the geological model, which were the subsurface weathering zone, the log angle fracture zone, the fracture zones and the bedrock were suggested. The hydrogeological model suggested in this study will be used as input parameters to carry out the groundwater flow modeling as a next step of the site characterization around KURT area.

Seismic motions in a non-homogeneous soil deposit with tunnels by a hybrid computational technique

  • Manolis, G.D.;Makra, Konstantia;Dineva, Petia S.;Rangelov, Tsviatko V.
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.161-205
    • /
    • 2013
  • We study seismically induced, anti-plane strain wave motion in a non-homogeneous geological region containing tunnels. Two different scenarios are considered: (a) The first models two tunnels in a finite geological region embedded within a laterally inhomogeneous, layered geological profile containing a seismic source. For this case, labelled as the first boundary-value problem (BVP 1), an efficient hybrid technique comprising the finite difference method (FDM) and the boundary element method (BEM) is developed and applied. Since the later method is based on the frequency-dependent fundamental solution of elastodynamics, the hybrid technique is defined in the frequency domain. Then, an inverse fast Fourier transformation (FFT) is used to recover time histories; (b) The second models a finite region with two tunnels, is embedded in a homogeneous half-plane, and is subjected to incident, time-harmonic SH-waves. This case, labelled as the second boundary-value problem (BVP 2), considers complex soil properties such as anisotropy, continuous inhomogeneity and poroelasticity. The computational approach is now the BEM alone, since solution of the surrounding half plane by the FDM is unnecessary. In sum, the hybrid FDM-BEM technique is able to quantify dependence of the signals that develop at the free surface to the following key parameters: seismic source properties and heterogeneous structure of the wave path (the FDM component) and near-surface geological deposits containing discontinuities in the form of tunnels (the BEM component). Finally, the hybrid technique is used for evaluating the seismic wave field that develops within a key geological cross-section of the Metro construction project in Thessaloniki, Greece, which includes the important Roman-era historical monument of Rotunda dating from the 3rd century A.D.

Diffusion-hydraulic properties of grouting geological rough fractures with power-law slurry

  • Mu, Wenqiang;Li, Lianchong;Liu, Xige;Zhang, Liaoyuan;Zhang, Zilin;Huang, Bo;Chen, Yong
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.357-369
    • /
    • 2020
  • Different from the conventional planar fracture and simplified Newton model, for power-law slurries with a lower water-cement ratio commonly used in grouting engineering, flow model in geological rough fractures is built based on ten standard profiles from Barton (1977) in this study. The numerical algorithm is validated by experimental results. The flow mechanism, grout superiority, and water plugging of pseudo plastic slurry are revealed. The representations of hydraulic grouting properties for JRCs are obtained. The results show that effective plugging is based on the mechanical mechanisms of the fluctuant structural surface and higher viscosity at the middle of the fissure. The formulas of grouting parameters are always variable with the roughness and shear movement, which play a key role in grouting. The roughness can only be neglected after reaching a threshold. Grouting pressure increases with increasing roughness and has variable responses for different apertures within standard profiles. The whole process can be divided into three stationary zones and three transition zones, and there is a mutation region (10 < JRCs < 14) in smaller geological fractures. The fitting equations of different JRCs are obtained of power-law models satisfying the condition of -2 < coefficient < 0. The effects of small apertures and moderate to larger roughness (JRCs > 10.8) on the permeability of surfaces cannot be underestimated. The determination of grouting parameters depends on the slurry groutability in terms of its weakest link with discontinuous streamlines. For grouting water plugging, the water-cement ratio, grouting pressure and grouting additives should be determined by combining the flow conditions and the apparent widths of the main fracture and rough surface. This study provides a calculation method of grouting parameters for variable cement-based slurries. And the findings can help for better understanding of fluid flow and diffusion in geological fractures.

Engineering Geological Properties of Some Domestic Marbles (국내산(國內産) 대리석(大理石)의 지질공학적(地質工學的) 특성(特性))

  • Cheong, Young Wook;Chon, Hyo Taek
    • Economic and Environmental Geology
    • /
    • v.23 no.4
    • /
    • pp.411-424
    • /
    • 1990
  • Mechanical, physical and petrographic properties of seventeen marble specimens collected from ten marble mines in Korea were investigated. Studied marbles were mainly composed of calcite, dolomite, and various amounts of serpentine, tremolite, olivine, quartz and opaque minerals. Complete and sutured textures were dominant. Compressive strength measured normal to the bedding plane is larger almost two times than that measured parallel to the bedding plane. From the results of Shore hardness test on marbles, water content was an important factor to decrease Shore hardness values. Engineering geological properties, especially, compressive strength, Young's modulus, wear resistance and water absorption could be controlled by the presence of quartz, and the type of marble texture. Water absorption-porosity, compressive strength-Young's modulus, and impact strength index-Los Angeles abrasion couples show good correlation. According to the comparative utility as commercial stone, it could be concluded that marbles from the Banglim mine, Songbo mine, Kwangdeok mine and Bongjeong mine were superior to that of other studied marbles.

  • PDF

Site Characterization for a Low-level Radioactive Waste Repository (원전수거물 처분장 후보부지 특성평가 방안)

  • 김천수;배대석;박천수
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.276-282
    • /
    • 2003
  • The geoscientific study on geological disposal for radioactive wastes has established the stepwise site characterization program, methods and investigation technology. However the intrinsic properties of geological material such as heterogeneity and scale dependent properties make difficulty on satisfactory understanding of geological conditions. To avoid unnecessary time delay and unexpected extra-cost for site investigation, the accurate and complete site investigation program should be established in a stepwise manner and the QC programs for investigation methods and procedures. Moreover, the technical requirements and preferences for a repository should be distinguished and be assessed at the end of each investigation step.

  • PDF

Physical Properties of Old Fluvial Aggregates in the Southeastern of Jeonnam Province, Korea (전남 동남부 지역에 부존하는 육상골재의 물성특성에 관한 연구)

  • Kim Ju Yong;Oh Keun Chang;Yang Dong Yoon;Hong Sei Sun;Chang Soo Bum;Lee Jin Young;Rim Hyun Soo
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.319-334
    • /
    • 2005
  • Some of old fluvial sediments are originally composed of fine and silty-clay grains with sands or some of them have been segregated by weathering as a result of the influence of groundwater fluctuations. For this reason, some of old fluvial sediments are not suitable for using as fine aggregates. Furthermore, the old fluvial aggregates with comparatively good quality have been exploited for a long time and quality of most remainders have been significantly poor. Though many old fluvial aggregates do not satisfy the quality controls(QC) standards such as KS F2526 and KS F 2527, they must be utilized to various usage suitable far different quality categories. Thus, we try to make constant efforts to utilize aggregates of all qualities. This study shows that physical properties of old fluvial aggregates are both controlled by source rocks and also related to old fluvial environment.

Infection Properties of Oak Wilt Disease in Bukhansan National Park Adjacent to Metropolitan Areas in Korea

  • Choi, Jin-Woo;Yeum, Jung-Hun
    • Journal of Environmental Science International
    • /
    • v.26 no.7
    • /
    • pp.803-815
    • /
    • 2017
  • In this study of the oak wilt disease that has occurred in a large scale in a protected area located near South Korea's metropolitan region, a detailed analysis has been conducted on the terrain, species and Diameters at Breast Height (DBH) of infected trees to identify the distribution of infection properties in the affected area. Taking into consideration the distribution of oak tree vegetation, a total of 4,640 quadrats in a size of 10 m by 10 m, have been set; and oak tree species, the DBH and infection damage per quadrat have been investigated. Geological properties have been analyzed according to elevation, slope, aspect and micro topography while a weighted value has been given according to the degree of infection in order to calculate an infection index. Through correlation analysis, the infection ratio of seriously-damaged and withered trees and the infection index have been analyzed with regards to the geological properties, tree species and DBH. The analysis shows that the disease tends to affect an area with medium elevation rather than those in the highest or lowest areas and that serious damage has been observed at rugged spots with a steep gradient (more than $30^{\circ}$). Although there has been no distinct tendency with regards to aspect, the infection ratio is relatively high in areas facing the north while the seriously-damaged and withered ratio are high in areas facing the south. In terms of micro topography, more damage has been spotted in valley terrain. Quercus mongolica has sustained more damage than other species. When it comes to the DBH, as seen in previous studies, large trees have suffered severe damage, but the analysis has also revealed conspicuous damage to medium trees with a DBH of 15-20 cm, which had not previously been considered at high risk.

Analysis of Slope Stability Using GIS in the Northern Area of Chungju Lake (지구정보시스템을 이용한 충주호 북부 지역의 사면 안정 평가)

  • 문상기
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.51-59
    • /
    • 2000
  • As a part of natural hazard assessment, regional slope stability analysis was conducted using Geoscientific Information System (GIS) in the northern area of Chungju Lake. Selected factors which affect the slope stability in the study area were lithology, soil, density of lineament, groundwater level, dip of slope, aspect of slope, and geological engineering properties. Geological structural domains were determined by collected data of joint orientation from about 200 sites in order to produce a slope instability map. Potential type of failure and its direction could be expected through the domains. And a slope instability map was produced, comparing the representative orientations of the domains with the orientations of the slopes which were made through TIN module in ARC/INFO. Under the consideration of environmental geological characteristics of the study area, rating and weighting of each factor of slope stability analysis were decided and spatial analysis of regional slope stability was couducted through overlaying technique of GIS. The result of areal distribution of slope stability showed that the most unstable area was the area between Mt. Pudae and Mt. Jubong, and the northern area of the railway station, Samtan.

  • PDF