• Title/Summary/Keyword: geological model

Search Result 562, Processing Time 0.03 seconds

Subsurface Geological Structure of the Southwestern Part of Ogcheon Zone by Gravity Survey (1) (중력탐사에 의한 옥천대 남서부의 지하지질구조(1))

  • Kim, Sung Kyun;Ahn, Kun Sang;Oh, Jinyong
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.363-369
    • /
    • 1997
  • As a part of the study to know the deep geological structure of the Ogcheon Zone. gravity survey is performed along the survey line of which direction is roughly perpendicular to major faults of the Zone. Recent studies for petrology. geochemistry. and structural geology in south-western Ogcheon Zone are outlined. Raw gravity data are corrected to obtain Bouguer anomalies and the anomalies are interpreted to obtain subsurface structures along the survey line. The subterranean density discontinuities determined from the power spectrum method are appeared at depths of 15.4 km and 2.8 km. It is considered that the depth of 15.4 km indicates the boundary between upper and lower crust. Probably the depth of 2.8 km represents the boundary between upper volcanic formations and granites. Alternatively. the observed Bouguer anomalies are interpreted in terms of lateral density variation model. Finally. the subterranean geological structure to satisfy the Bouguer anomalies is presented through the iterative forward method in which results obtained from surface geological informations and from the inverse method are adopted as an initial model.

  • PDF

A Structure-controlled Model for Hot Spring Exploration in Taiwan by Remote Sensing

  • Liu, Jin-King;Yu, Ming-Fang;Ueng, Shiun-Jenq
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.28-30
    • /
    • 2003
  • Hot Spring Law of Taiwan was passed in legislative assembly on 3 June 2003. Hot springs would become one of the most important natural resources for recreation purposes. Both public and private sectors will invest large amount of capital in this area in the near future. The value of remote sensing technology is to give a critical tool for observing the landscape to find out mega-scaled geological structures, which may not be able to be found by conventional approaches. The occurrences of the hot springs in Taiwan are mostly in metamorphic and sedimentary rocks , other than in volcanic environments. Local geothermal anomaly or heat of springs transfer by liquid convection other than conduction or radiation. The deeply -seated fractures of hard rocks are the conduit of the convection of hot water, which could be as deep as 3000 meters in a hypothetical model of Taiwan. Clues to find outcrops of hot spring can be obtained by a structure-controlled model deduced by geological lineaments observed by satellite images and stereoscopic interpretation of aerial photographs. A case study conducted in Eastern Taiwan will be demonstrated.

  • PDF

Geologic Map Data Model (지질도 데이터 모델)

  • Yeon, Young-Kwang;Han, Jong-Gyu;Lee, Hong-Jin;Chi, Kwang-Hoon;Ryu, Kun-Ho
    • Economic and Environmental Geology
    • /
    • v.42 no.3
    • /
    • pp.273-282
    • /
    • 2009
  • To render more valuable information, a spatial database is being constructed from digitalized maps in the geographic areas. Transferring file-based maps into a spatial database, facilitates the integration of larger databases and information retrieval using database functions. Geological mapping is the graphical interpretation results of the geological phenomenon by geological surveyors, which is different from other thematic maps produced quantitatively. These features make it difficult to construct geologic databases needing geologic interpretation about various meanings. For those reasons, several organizations in the USA and Australia are suggesting the data model for the database construction. But, it is hard to adapt to a domestic environment because of the representation differences of geological phenomenon. This paper suggests the data model adaptive in domestic environment analyzing 1:50,000 scales of geologic maps and more detailed mine geologic maps. The suggested model is a logical data model for the ArcGIS GeoDatabase. Using the model it can be efficiently applicable in the 1:50,000 scales of geological maps. It is expected that the geologic data model suggested in this paper can be used for integrated use and efficient management of geologic maps.

Understanding of Group Modeling Process with Geological Field Trip applied on Social-Construction of Scientific Model: Focusing on Constraints (과학적 모델의 사회적 구성 수업을 적용한 야외지질학습에서 나타나는 조별 모델 구성과정 이해: 제약조건을 중심으로)

  • Choi, Yoon-Sung;Choi, Jong-Rim;Kim, Chan-Jong;Choe, Seung-Urn
    • Journal of the Korean earth science society
    • /
    • v.38 no.4
    • /
    • pp.303-320
    • /
    • 2017
  • Purpose of this study is understanding of group modeling process focusing on constraints with geological field trip applied on social-construction of scientific model. This study was carried out on 12 students of 3 groups who participate in the study 'S' gifted education center. Students were conducted to theme of 'How was formation of Mt. Gwanak?' on 2 field trip classes and 3 modeling classes. Semi-structured interviews, all discourse of field trip and modeling classes, records of personal and group activity were analyzed to constraints based on theoretical background proposed by Nersessian (2008). Results as follows. First, sources of constraints are scientific knowledge, contents observed by students during field trips and additional materials things to be explained by model during modeling class with geological field trip applied on social-construction of scientific model. Second, there are 3 types of constraints to affect making group modeling. It is that shared constraint which used commonly by all the group members. It called selected constraint that used during the initial modeling and later were reflected on for use in the group modeling. And it is that generated constraints, which were not in the initial modeling but were used later in the group modeling. This study suggests that not only the constraints can help to understand of making group model through how they used but also show that example of learning with geological field trip on social-construction of scientific model to contribute school science.

A benchmark experiment for analogue modeling of extensional basin formation and evaluation of applicability of centrifuge test (인장 분지 형성을 구현하기 위한 상사 모델링 벤치마크 실험 및 원심모형실험의 적용성 평가)

  • Lee, Sung-Bok;Park, Heon-Joon
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.6
    • /
    • pp.605-614
    • /
    • 2018
  • For physical experiments like analogue modeling that designed for studying geological deformation, reproducibility of the deformation is important to guarantee the reliability of the experiment. In this study, the normal fault generated by extensional stress is benchmarked using a sand box model. The scaling factors for the modeling test are considered and the experiments are conducted by setting the appropriate material, extensional stress, and boundary condition in the same way as in a benchmark experiment. In addition, a large centrifuge facility is used to vary the centrifugal acceleration and extension rate in the same sized model to account for the scaling factors of the physical quantity during extensional behavior. At 1 g benchmark condition and a centrifugal field at 10 g, a constant rate of the extensional stress is implemented and the topographic evolution is reliably measured. In this study, the reliability and applicability of large centrifuge model tests are evaluated for formulating experiments designed to study geological deformation.

Application and Comparison of GeoWEPP model and USLE model to Natural Small Catchment - A Case Study in Danwol-dong, Icheon-si (소유역에서의 토사유출 산정을 위한 GeoWEPP model과 USLE의 비교.적용 연구 - 이천시 단월동 유역을 사례로)

  • Kim, Min-Seok;Kim, Jin-Kwan;Yang, Dong-Yoon
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.103-113
    • /
    • 2007
  • The empirical USLE and the physically-based GeoWEPP which were distributed model linked with GIS (Geographical Information System) were applied to small natural catchment located in Icheon-si, Gyeonggi-do, South Korea. The results using by two models were total sediment yield from study catchment between January, 2004 and January, 2005. During the study period, the observed total sediment yield was 270.54 ton and the total sediment yield computed by USLE and GeoWEPP model were 358.1 ton and 283.30 ton, respectively. Each of results computed by USLE and GeoWEPP overestimated more than the observed total sediment yield, but, based on the results, the total sediment yield computed by GeoWEPP approximated to the observed result. We suggest that the reason why the total sediment yield using by models overestimated was that computed amounts by two models did not contain the amount of suspended sediment flowed over the weir.

A Prediction Model of Landslides in the Tertiary Sedimentary Rocks and Volcanic Rocks Area (제3기 퇴적암 및 화산암 분포지의 산사태 예측모델)

  • Chae Byung-Gon;Kim Won-Young;Na Jong-Hwa;Cho Yong-Chan;Kim Kyeong-Su;Lee Choon-Oh
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.443-450
    • /
    • 2004
  • This study developed a prediction model of debris flow to predict a landslide probability on natural terrain composed of the Tertiary sedimentary and volcanic rocks using a logistic regression analysis. The landslides data were collected around Pohang, Gyeongbuk province where more than 100 landslides were occurred in 1998. Considered with basic characteristics of the logistic regression analysis, field survey and laboratory soil tests were performed for both slided points and not-slided points. The final iufluential factors on landslides were selected as six factors by the logistic regression analysis. The six factors are composed of two topographic factors and four geologic factors. The developed landslide prediction model has more than $90\%$ of prediction accuracy. Therefore, it is possible to make probabilistic and quantitative prediction of landslide occurrence using the developed model in this study area as well as the previously developed model for metamorphic and granitic rocks.

Comparison of proliferation resistance among natural uranium, thorium-uranium, and thorium-plutonium fuels used in CANada Deuterium Uranium in deep geological repository by combining multiattribute utility analysis with transport model

  • Nagasaki, Shinya;Wang, Xiaopan;Buijs, Adriaan
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.794-800
    • /
    • 2018
  • The proliferation resistance (PR) of Th/U and Th/Pu fuels used in CANada Deuterium Uranium for the deep geological repository was assessed by combining the multiattribute utility analysis proposed by Chirayath et al., 2015 with the transport model of radionuclides in the repository and comparing with that of the used natural U fuel case. It was found that there was no significant advantage for Th/U and Th/Pu fuels from the viewpoint of the PR in the repository. It was also found that the PR values for used nuclear fuels in the repository of Th/U, Th/Pu, and natural U was comparable with those for enrichment and reprocessing facilities in the pressurized water reactor (PWR) nuclear fuel cycle. On the other hand, the PR values considering the transport of radionuclides in the repository were found to be slightly smaller than those without their transport after the used nuclear fuels started dissolving after 1,000 years.

Development and Application of Learning on Geological Field Trip Utilizing on Social Construction of Scientific Model (과학적 모델의 사회적 구성을 활용한 야외지질학습 개발 및 적용)

  • Choi, Yoon-Sung;Kim, Chan-Jong;Choe, Seung-Urn
    • Journal of the Korean earth science society
    • /
    • v.39 no.2
    • /
    • pp.178-192
    • /
    • 2018
  • The purposes of this study were to develop and apply on learning on geological field trip utilizing the social construction of scientific model. We developed field trip places by considering not only Orion (1993)'s novelty space but also the achievement standards of 2015 national curriculum. The subjects of the study were 8 in the 'G' science gifted education center. We conducted a study using the theme of 'How was formed Mt. Gwanak?' on 5 lessons including a series of 2 field trip lessons and 3 lessons utilizing the social construction of scientific model. Students participated in pre- and post-test on the understanding of scientific knowledge about formation of mountain. Semi-structured interview was used to analyze students' learning about geological field trip in terms of affective domain. Results were as follows. First, there were 2 places of upper-stream valley and down-stream valley separately. They contained outcrops gneiss, granite, joint in the valley, xenolith, fault plane, mineral in the valley. Second, pre- and post-test and semi-structure interview were analyzed in terms of what scientific knowledge students learned about and how Mt. Gwanak was formed. Seven students explained that Mt. Gwanak was volcano during pretest. Seven students described how granite was formed to form Mt. Gwanak. They also understood geological time scale, i.e., metamorphic rock. Third, the geological field trip was effective to low achievement geoscience students as they engaged in the activities of field trip. Using positive responses on affective learning was effective on learning on geological field trip when utilizing the social construction of scientific model. This study suggests that teachers use an example 'model' on geoscience education. This study also suggests that teachers apply the social construction of scientific model to geological field trip.