• Title/Summary/Keyword: geological mapping

Search Result 178, Processing Time 0.027 seconds

Main challenges for deep subsea tunnels based on norwegian experience

  • Nilsen, Bjorn
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.5
    • /
    • pp.563-573
    • /
    • 2015
  • For hard rock subsea tunnels the most challenging rock mass conditions are in most cases represented by major faults/weakness zones. Poor stability weakness zones with large water inflow can be particularly problematic. At the pre-construction investigation stage, geological and engineering geological mapping, refraction seismic investigation and core drilling are the most important methods for identifying potentially adverse rock mass conditions. During excavation, continuous engineering geological mapping and probe drilling ahead of the face are carried out, and for the most recent Norwegian subsea tunnel projects, MWD (Measurement While Drilling) has also been used. During excavation, grouting ahead of the tunnel face is carried out whenever required according to the results from probe drilling. Sealing of water inflow by pre-grouting is particularly important before tunnelling into a section of poor rock mass quality. When excavating through weakness zones, a special methodology is normally applied, including spiling bolts, short blast round lengths and installation of reinforced sprayed concrete arches close to the face. The basic aspects of investigation, support and tunnelling for major weakness zones are discussed in this paper and illustrated by cases representing two very challenging projects which were recently completed (Atlantic Ocean tunnel and T-connection), one which is under construction (Ryfast) and one which is planned to be built in the near future (Rogfast).

Mapping Submarine Bathymetry and Geological Structure Using the Lineament Analysis Method

  • Kwon, O-Il;Baek, Yong;Kim, Jinhwan
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.455-461
    • /
    • 2014
  • The Honam-Jeju, Korea-Japan, and Korea-China subsea tunnel construction projects have drawn significant attention since the early 2000s. These subsea tunnels are much deeper than most existing natural shallow sea tunnels linking coastal areas. Thus, the need for developing new technologies for the site selection and construction of deep subsea tunnels has recently emerged, with the launch of a research project titled "Development of Key Subsea Tunnelling Technology" in 2013. A component of this research, an analysis of deep subsea geological structure, is currently underway. A ground investigation, such as a borehole or geophysical investigation, is generally carried out for tunnel design. However, when investigating a potential site for a deep subsea tunnel, borehole drilling requires equipment at the scale of offshore oil drilling. The huge cost of such an undertaking has raised the urgent need for methods to indirectly assess the local geological structure as much as possible to limit the need for repeated borehole investigations. This study introduces an indirect approach for assessing the geological structure of the seafloor through a submarine bathymetry analysis. The ultimate goal here is to develop an automated approach to the analysis of submarine geological structures, which may prove useful in the selection of future deep subsea tunnel sites.

Digital Mapping and 3D Visualization of Tunnel Face Information under Construction (터널 시공중 굴착면 지질정보 디지털화 및 3D 가시화)

  • Kwon, Young-Ju;Lee, Cheong;Kim, Jin-Woung;Kim, Kwang-Yeom;Yim, Sung-Bin;Choi, Jai-Won
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.649-659
    • /
    • 2010
  • In this study, a tunnel information database system was developed to optimize the process of assessing and analyzing geological information from the life cycle of tunnel construction. All data from every stage in tunnel construction can be put into the system and be utilized for the decision making. In the system, tunnel face mapping information can be managed by digital format which can be easily transformed into 3D visualization module and thus help analyzing geological discontinuities. The system was applied to waterway and road tunnel in domestic area to verify its effectiveness.

Application of Linear Spectral Mixture Analysis to Geological Thematic Mapping using LANDSAT 7 ETM+ and ASTER Satellite Imageries (LANDSAT 7 ETM+와 ASTER영상정보를 이용한 선형분광혼합분석 기법의 지질주제도 작성 응용)

  • Kim Seung Tae;Lee Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.6
    • /
    • pp.369-382
    • /
    • 2004
  • The purpose of this study is the investigation of applicability of LSMA(Linear Spectral Mixture Analysis) on the geological uses with different radiometric and spatial types of sensor images such as Terra ASTER and LANDSAT 7 ETM+. As for the actual application case, geologic mapping for mineral exploration using ASTER and ETM+ at the Mongolian plateau region was carried out. After the pre-processing such as the geometric corrections and calibration of radiance, 7 endmembers, as spectral classes for geologic rock types, related to spectral signature deviation for the given application was determined by the pre-surveyed geological mapping information and the correlation matrix analysis, and total 20 images of ASTER and ETM+ were used to LSMA processing. As the results, fraction maps showing individual mineral types in the study area are presented. It concluded that this approach based on LSMA using ETM+ and ASTER is regarded as one of the effective schemes for geologic remote sensing.

Some results of the airborne imaging radar program in the Philippines

  • Vinluan, Randy John N.;Lopez, Epifanio D.;Salvador, Jerry Hervacio G.;Quiambao, Rowena B.;Lagmay, Alfredo Mahar F.;Crisostomo, Bobby A.;Hilario, Flaviana D.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.381-383
    • /
    • 2003
  • SAR imagery offers a reliable mode of image acquisition over tropical countries for various applications. The Philippines participated in two missions to the Pacific Rim by NASA in 1996 and 2000 that saw the deployment of the AIRSAR instrument. This paper discusses the Philippine experience in the use of polarimetric and interferometric radar datasets for diverse applications, including hazards mapping, geologic and geomorphologic mapping, and land cover mapping. The results are discussed in the light of present efforts at capacity building in remote sensing, attempts at operationalizing the use of SAR for priority applications, and future ambitions in remote sensing.

  • PDF

Suggestion of Regression Equations for Estimating RMR Factor Rating by Geological Condition (지질 조건을 고려한 RMR 인자값 추정을 위한 선형회귀식 제안)

  • Kim, Kwang-Yeom;Yim, Sung-Bin;Kim, Sung-Kwon;Kim, Chang-Yong;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.555-566
    • /
    • 2007
  • In general, RMR classification system is used for the support design of a tunnel. Face mapping during excavation and RMR-based rock classifications are conducted in order to provide information for complementary changes to preliminary survey plans and for continuous geological estimations in direction of tunnel route. Although they are ever so important, there are not enough time for survey in general and sometimes even face mapping is not available. Linear regression analysis for the estimation of mediating RQD and condition of discontinuities, which require longer time and more detailed observation in RMR, was performed and optimum regression equations are suggest as the result. The geological data collected from tunnels were analyzed in accordance with three rock types as sedimentary rock, phyllite and granite to see geological effects, generally not been considered in previous researches. Parameters for the regression analysis were set another RMR factor.

Geomorphological Approach in Geological Mapping of the Miocene and Post-Miocene Formations in the Albudeite Area, Spain (동남(東南) Spain Albudeite 지역(地域)의 Miocene및 Post-Miocene Formation에 대한 지질조사(地質調査)에 있어서의 지형학적(地形學的)인 접근(接近))

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.6 no.3
    • /
    • pp.171-182
    • /
    • 1973
  • Gemorphological and photogeological techniqes are applied to the problem of geological mapping of a semi-arid area, Albudeite, Southeastern Spain. As a result of this, a geological and surface materials map is made which shows the upper Miocene formation, which mainly consists of marl, limestone and sandstone, is further subdivided into three members, i. e. lower, middle and upper, and the post-Miocene deposits were differentiated into seven stratigraphic units, and mapped. The relationships between geology, landforms and land comlexes previously reognized have been reviewed. The methods adopted have proved to be valuable in interpreting and mapping a compex relationship in which highly variable bedrock outcrops and shallow surface materiales produced under sub-aerial conditios.

  • PDF

Geostatistical Integration of Ground Survey Data and Secondary Data for Geological Thematic Mapping (지질 주제도 작성을 위한 지표 조사 자료와 부가 자료의 지구통계학적 통합)

  • Park, No-Wook;Jang, Dong-Ho;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.581-593
    • /
    • 2006
  • Various geological thematic maps have been generated by interpolating sparsely sampled ground survey data and geostatistical kriging that can consider spatial correlation between neighboring data has widely been used. This paper applies multi-variate geostatistical algorithms to integrate secondary information with sparsely sampled ground survey data for geological thematic mapping. Simple kriging with local means and kriging with an external drift are applied among several multi-variate geostatistical algorithms. Two case studies for spatial mapping of groundwater level and grain size have been carried out to illustrate the effectiveness of multi-variate geostatistical algorithms. A digital elevation model and IKONOS remote sensing imagery were used as secondary information in two case studies. Two multi-variate geostatistical algorithms, which can account for both spatial correlation of neighboring data and secondary data, showed smaller prediction errors and more local variations than those of ordinary kriging and linear regression. The benefit of applying the multi-variate geostatistical algorithms, however, depends on sampling density, magnitudes of correlation between primary and secondary data, and spatial correlation of primary data. As a result, the experiment for spatial mapping of grain size in which the effects of those factors were dominant showed that the effect of using the secondary data was relatively small than the experiment for spatial mapping of groundwater level.

Slope Stability for Bridge Access Road on Sedimentary Rocks using Geological Cross Sections (지질단면을 이용한 교량 접속도로 퇴적암 비탈면의 안정성 검토 연구)

  • Ihm, Myeong Hyeok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.507-512
    • /
    • 2022
  • The subjects of the study are the sedimentary rock slope of the Mesozoic Gyeongsang Supergroup, which has a high risk of failure. The rocks of the slope shall be sandstone, siltstone and dacite, and discontinuities shall develop beddings, shear joints, extension joints, and dacite dyke boundary planes. The type and scale of failure varies depending on the type of rock and the strike/dip of the discontinuities, but the planar failure prevails. Based on the face-mapping data, SMR, physical and mechanical testing of rocks, the critical equilibrium analysis, all representative sections required a countermeasure method because the acceptable safety factor during dry and rainy seasons were far below Fs=1.5 and Fs=1.2. After applying the countermeasure method, both the dry and wet conditions of the slope exceeded the allowable safety factor. In particular, the face-mapping data of the slope-face, the geological cross-sections of several representative sections perpendicular to the slope-face, and the critical equilibrium analysis and the presentation of countermeasure methods that have been reviewed based on them are expected to be reasonable tools for the slope stability.