• Title/Summary/Keyword: geological groups

Search Result 85, Processing Time 0.025 seconds

Distribution and Characteristics of the Sedimentary Basin Offshore San-in to Tsushima Islands (일본 산닌-쓰시마 해양에 존재하는 퇴적분지의 분포와 특성)

  • Park Se-Jin
    • The Korean Journal of Petroleum Geology
    • /
    • v.10 no.1_2 s.11
    • /
    • pp.34-39
    • /
    • 2004
  • This article discusses stratigraphy and geological history of continental shelf area covering of offshore San-in to Tsushima islands. Geological data from 5 wells and detailed seismic surveys indicate that sediments in the studied area are divided into 4 stratigraphic groups ranging from Oligocene to Tertiary in age, namely X, H, K, and D groups in ascending order. The oldest X group of Oligocene time comprises paralic sediments including volcanics deposited in the initial stage of basin-formation. N group of mainly lower Miocene time consists of deep marine sediment, representing the highest stage of transgression. Sediments of the K group of middle Miocene time show distinct off-lapping depositional pattern during the basinfilling stage. The youngest D group covers these older groups unconformably. Strong deformation of sediments prior to the deposition of the D group formed many anticlinal structures. Five exploratory wells were drilled at the selected structures, where only minor gas shows were encountered. The area provides the enough palaeotemperature to mature the source rocks at moderate depth.

  • PDF

A Qualitative Analysis on n Geological Field Excursion leaching Model on Tando Coast and Hanyom Area at Shiwha Lake In Kyounggido (경기도 시화호 탄도 해안과 한염 지역의 야외 지질 답사 수업모형에 대한 질적 분석)

  • Maeng Seung-Ho;Wee Soo-Meen
    • Journal of the Korean earth science society
    • /
    • v.26 no.1
    • /
    • pp.9-29
    • /
    • 2005
  • By analyzing and integrating established geological field study instances, this study offered a new geological field excursion teaching model with several steps: unifying question raising. excursion generalization. intensive field direction, searching, primary conclusion, re-searching, group discussion. adjustment, and excursion summarizing. Then by Qualitatively assaying the responses which students showed after applying this teaching model, a concrete teaching plan was sought for earth science teachers who were planning to begin geological field excursion classes. Students evaluated very highly on the unifying question and excursion generalization because these items provided a sense of direction and an overall theme for geological excursion in advance. Also. since the students had little to none geological knowledge and field excursion experience, the intensive field direction gave them a lot of help with their field excursion activities. Students thought that coming up with a primary conclusion based on the summary of what they had observed in their activities was original. and highly valued the process of sharing different opinions in group discussions and drawing out a final conclusion. Teachers should help students develop a friendly atmosphere, by organizing group activities and continuously feedlng them with uniting questions and excursion generalization within the groups. Also they should prepare enough contents for intensive field direction and ways to get their points across. In the process, they should arrange beforehand detailed instructions for every outcome, with the intention of solving the question. Furthermore. teachers should follow carefully how conclusions are drawn. instruct students not to reach conclusions based on mere assumptions, and be aware of misconceptions students have toward geological phenomenon in advance, so that the discussion can be lead in the right direction.

Lithology Determination by Log Analysis from a Borehole-PABH1 in the Pungam Sedimentary Basin (풍암퇴적분지 내 시추공 PABH1에서의 물리검층에 의한 암상의 판정)

  • 김영화;장승익
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.163-173
    • /
    • 1998
  • Suite of log analysis techniques consisting of geophysical well log, geological core log, and physical core log have been made to understand the well log responses and to determine the lithology of a test borehole-PABH1 located in Pungam sedimentary basin, Sosok, Hongchon-gun, Kangwon Province. Geological core logging has been precisely made over the cores taken between 64 and 124 meters, and 11 groups of rock types were deduced. Using the core samples divided by 11 groups, geophysical property measurements consisting of resistivity, natural gamma and density were made. Each rock group in the area is shown to have its characteristic physical response from geophysical well log and geophysical core logs. The outstanding physical responses particularly shown from siltstone, coarse sandstone to conglomerate, and granitic gneiss in the area were effectively used as keybeds in correlating the geophysical well logs to the result of geological core logs.

  • PDF

Generation Characteristics and Prediction of Acid Rock Drainage(ARD) of Road Cut Slopes (건설현장 절취사면의 산성배수 발생특성과 잠재적 산발생능력 평가)

  • Lee, Gyoo-Ho;Kim, Jae-Gon;Lee, Jin-Soo;Chon, Chul-Min;Park, Sam-Gyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.491-498
    • /
    • 2005
  • Acid Rock Drainage(ARD) is the product formed by the atmospheric(i.e. by water, oxygen and carbon dioxide) oxidation of the relatively common iron-sulphur minerals pyrite($FeS_2$). ARD causes the acidification and heavy metal contamination of water and soil and the reduction of slope stability. In this study the generation characteristics and the prediction of ARD of various road cut slopes were studied. An attempt to classify the rocks into several groups according to their acid generation potentials was made. Acid Base Accounting(ABA) tests, commonly used as a screening tool in ARD predictions, were performed. Sixteen rock samples were classified into PAF(potentially acid forming) group and four rock samples into NAF(non-acid forming) group. The chemical analysis of water samples strongly suggested that ARD with high content of heavy metals and low pH could pollute the ground water and/or stream water.

  • PDF

SHRIMP U-Pb Zircon Ages of the Haeinsa Granite from Central Part of the Yeongnam Massif (영남육괴 중부에 분포하는 해인사화강암의 SHRIMP U-Pb 저어콘 연대)

  • Kim, Sunwoong;Choi, Jeongyun;Kim, Jin-Seop
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.401-407
    • /
    • 2016
  • The SHRIMP zircon U-Pb age dating was carried out for the age-unknown Haeinsa Granite located in the middle Yeongnam Massif. SHRIMP zircon U-Pb age determinations of 7 samples from the Haeinsa Granite in Geochang area show two age groups. Ages from 5 samples (M-3-1, H-1, 3, 5, 10) are $192.4{\pm}1.4{\sim}195.5{\pm}1.9Ma$, whereas ages from 2 samples (H-11 and 12) are $187.7{\pm}3.3Ma$ and $188.2{\pm}3.6Ma$, respectively.

Geological Structures of the Imgye Area, Kangweondo, Korea (강원도(江原道) 임계지역(臨溪地域)의 지질구조(地質構造))

  • Kim, Jeong Hwan;Kee, Weon Seo
    • Economic and Environmental Geology
    • /
    • v.24 no.1
    • /
    • pp.43-55
    • /
    • 1991
  • The Imgye area, in the NE Taebaegsan Region, consists of Precambrian granites and schist complex at the base and Paleozoic sedimentary rocks and amphibolite at cover. The granites in the area were previously thought to be Paleozoic in age, but recent geochronological data yields isotopic age ranging from $1837{\pm}82Ma$ to $2108{\pm}82Ma$ by Rb-Sr whole rock method. Therefore, basement-cover relations in the area should be reexamined. During the study, mylonite zone recognized along the contact boundary between Precambrian granites and Cambrian Jangsan Quartzite Formation. Mylonite zone has 150 - 250 m in width. Mylonitic rocks can divide into two groups; quartz mylonite derived from Jangsan Formation and mylonitic granites from Precambrian granites. Intensity of mylonitic foliation decreased toward the north. Amphibolite occurs as an intrusive sills within mylonite zone. Mineral fabrics and small scale shear zones are commonly seen in amphibolite. It indicates that intrusive age of amphibolite is synchronous to the formation of mylonite zone. Mylonite zone was reactivated as ductile thrust faults and forms the hinterland dipping imbricate zone during the Cretaceous Bulkuksa Orogeny. The near parallelism of mineral stretching lineation and long axis of strain ellipes indicates that the area is affected by a homogeneous pure shear flattening together with the variable components of simple shear.

  • PDF

Characteristics of Abutment Slopes of Four Dams in Korea (우리나라 주요 댐 좌우안 사면의 특징)

  • 신동훈;이종욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.183-195
    • /
    • 2000
  • Slopes near a dam body can be categorized into 4 groups, such as right and left abutment slopes, reservoir slopes, slopes along the access road and slopes along the relocated road. For each of the geological investigation, the design standards, the evaluation methods of safety and the maintenance methods, both abutment slopes in the four dams have different characteristics from the conventional cut slopes in that they can severely affect the dam safety. From this point of view this study compares and analyzes the geological investigation methods, the status of design and construction, evaluation method of safety, and monitoring & maintaining methods for four major dams in Korea, such as Soyanggang dam, 'Andong dam, Chungju dam and Boryong dam.

  • PDF

Understanding of Group Modeling Process with Geological Field Trip applied on Social-Construction of Scientific Model: Focusing on Constraints (과학적 모델의 사회적 구성 수업을 적용한 야외지질학습에서 나타나는 조별 모델 구성과정 이해: 제약조건을 중심으로)

  • Choi, Yoon-Sung;Choi, Jong-Rim;Kim, Chan-Jong;Choe, Seung-Urn
    • Journal of the Korean earth science society
    • /
    • v.38 no.4
    • /
    • pp.303-320
    • /
    • 2017
  • Purpose of this study is understanding of group modeling process focusing on constraints with geological field trip applied on social-construction of scientific model. This study was carried out on 12 students of 3 groups who participate in the study 'S' gifted education center. Students were conducted to theme of 'How was formation of Mt. Gwanak?' on 2 field trip classes and 3 modeling classes. Semi-structured interviews, all discourse of field trip and modeling classes, records of personal and group activity were analyzed to constraints based on theoretical background proposed by Nersessian (2008). Results as follows. First, sources of constraints are scientific knowledge, contents observed by students during field trips and additional materials things to be explained by model during modeling class with geological field trip applied on social-construction of scientific model. Second, there are 3 types of constraints to affect making group modeling. It is that shared constraint which used commonly by all the group members. It called selected constraint that used during the initial modeling and later were reflected on for use in the group modeling. And it is that generated constraints, which were not in the initial modeling but were used later in the group modeling. This study suggests that not only the constraints can help to understand of making group model through how they used but also show that example of learning with geological field trip on social-construction of scientific model to contribute school science.

Geoheritage Values and Geotourism of the Igidae-Oryukdo Geosites in the Busan National Geopark, Korea (부산국가지질공원 이기대·오륙도 지질명소에 분포하는 지질유산의 가치평가와 이를 활용한 지오투어리즘)

  • Kim, Sunwoong;Kang, Karyoung;Son, Moon;Paik, Insung;Lim, Hyounsoo;Kim, Jinseop
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.99-112
    • /
    • 2017
  • Geoheritage is designated to preserve geodiversity of geological and geomorphological cases. Geotourism is an extensive activity that aims at the understanding of geology and earth's history for the geoheritage and for developing regions through preserving the geodiveristy of geoheritage. Igidae-Oryukdo is geosite of Busan National Geopark and its visitors are expected to grow rapidly. Accordingly, for the effective use of the geosites, The development and application of geotourism is required. This study suggests that tuffacious sedimentary rocks, hornblende megacrysts-bearing dike, copper mine, marine potholes should designated as the central points for advanced learning stage; volcanic breccia, sea caves, sea cliffs, wavecut platform, tor and islands as the central points for basic learning stage. Based on this central points, this study established concepts for getourism in this study area at basic and expert level for individual and family tourists, and also small or large groups such as school students.

Relationship between Mn Nodule Abundance and Other Geological Factors in the Northeastern Pacific: Application of GIS and Probability Method

  • Ko, Young-Tak;Lee, Sa-Ro;Kim, Jong-Uk;Kim, Ki-Hyune;Jung, Mee-Sook
    • Ocean Science Journal
    • /
    • v.41 no.3
    • /
    • pp.149-161
    • /
    • 2006
  • The aims of this study are 1) to construct a database using geostatistics and Geographic Information System (GIS), and 2) to derive the spatial relationships between manganese nodule abundance and other geological factors such as metal grade, slope, water depth, topography, and acoustic characteristics of the sub-bottom. Using GIS, it is possible to analyze a large amount of data efficiently, and to maximize the practical application, to increase specialization, and to enhance the accuracy of the analyses. The greater the copper and nickel grade, the higher the rating. The distribution pattern of nickel grade is similar to that of copper grade. The slopes are generally less than $3^{\circ}$ except for seamounts and cliff areas. The rating shows no correlation with slope. The rating is highest for slopes between 2.5 and $3.5^{\circ}$ in block N1 and between 4.0 and $4.5^{\circ}$ in block N3. The topography is classified into five groups: seamount, hill crest, hill slant, hill base or plain, and seafloor basin or valley. The rating proves lowest for seamount and hill crest. Our results show that the rating increases with the water depth in the study area. Nodule abundance dose not show any significant relationship with the thickness of the upper transparent layer in the study area.