• Title/Summary/Keyword: geological disposal

Search Result 250, Processing Time 0.03 seconds

Effect of Deformation Zones on the State of In Situ Stress at a Candidate Site of Geological Repository of Nuclear Waste in Sweden (스웨덴 방사성 폐기물 처분장 후보부지의 사례를 통해 살펴본 대규모 변형대가 암반의 초기응력에 미치는 영향)

  • Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.18 no.2
    • /
    • pp.134-148
    • /
    • 2008
  • The state of in situ stress is an important factor in considering the suitability of a site as a geological repository for nuclear waste. In this study, three-dimensional distinct numerical analysis was conducted to investigate the effect of deformation zones on the state of stress in the Oskarshamn area, which is one of two candidate sites in Sweden. A discontinuum numerical model was constructed by explicitly representing the numerous deformation zones identified from site investigation and far-field tectonic stress was applied in the constructed model. The numerical model successfully captured the variation of measured stress often observed in the rock mass containing large-scale fractures, which shows that numerical analysis can be an effective tool in improving the understanding of the state of stresses. Discrepancies between measured and modelled stress are attributed to the inconsistent quality of measured stress, uncertainty in geological geometry. and input data for fractures.

Geological Factor Analysis for Evaluating the Long-term Safety Performance of Natural Barriers in Deep Geological Repository System of High-level Radioactive Waste (지질학적 심지층 처분지 내 천연방벽의 고준위 방사성 폐기물 장기 처분 안전성 평가를 위한 지질학적 인자 분석)

  • Hyeongmok Lee;Jiho Jeong;Jaesung Park;Subi Lee;Suwan So;Jina Jeong
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.533-545
    • /
    • 2023
  • In this study, an investigation was conducted on the features, events, and processes (FEP) that could impact the long-term safety of the natural barriers constituting high-level radioactive waste geological repositories. The FEP list was developed utilizing the IFEP list 3.0 provided by the Nuclear Energy Agency (NEA) as foundational data, supplemented by geological investigations and research findings from leading countries in this field. A total of 49 FEPs related to the performance of the natural barrier were identified. For each FEP, detailed definitions, classifications, impacts on long-term safety, significance in domestic conditions, and feasibility of quantification were provided. Moreover, based on the compiled FEP list, three scenarios that could affect the long-term safety of the disposal facility were developed. Geological factors affecting the performance of the natural barrier in each scenario were selected and their relationships were visualized. The constructed FEP list and the visualization of interrelated factors in various scenarios are anticipated to provide essential information for selecting and organizing factors that must be considered in the development of mathematical models for quantitatively evaluating the long-term safety of deep geological repositories. In addition, these findings could be effectively utilized in establishing criteria related to the key performance of natural barriers for the confirmation of repository sites.

KAERI Underground Research Tunnel (KURT) (한국원자력연구원 지하처분연구시설)

  • Cho, Won-Jin;Kwon, Sang-Ki;Park, Jeong-Hwa;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.239-255
    • /
    • 2007
  • An underground research tunnel is essential to validate the integrity of a high-level waste disposal system, and the safety of geological disposal. In this study, KAERI underground research tunnel(KURT) was constructed in the site of Korea Atomic Energy Research Institute(KAERI). The results of the site investigation and the design of underground tunnel were presented. The procedure for the construction permits and the construction of KURT were described briefly. The in-situ experiments being carried out at KURT were also introduced.

  • PDF

The Experimental Study of the Migration Phenomena of the Radioactive Elements : A Basic Study for the Radioactive Waste Disposal (방사성(放射性) 원소(元素)의 이동현상(移動現象)에 관(關)한 실험적(實驗的) 연구(硏究) : 방사성(放射性) 폐기물(廢棄物) 처리(處理)를 위한 기초연구(基礎硏究))

  • Kim, Oak Bae;Park, Hee Youl
    • Economic and Environmental Geology
    • /
    • v.22 no.3
    • /
    • pp.277-283
    • /
    • 1989
  • For the study of attenuation phenomena of the radioactive elements in solution, the adsorption experiment of thorium, uranium, barium and strontium on kaolinite, gibbsite, quartz, granite and shale as a function of time, pH and the surface area was conducted under the competition condition each other. There are two steps of adsorption kinetics. The first step is faster and completes in hours or a day, and the second step is slower eqiulibrium reaction. The adsorption rate which is considered to be related to CEC differs with adsorbent and decreases in the order of shale, kaolinite, granite, gibbsite and quartz. On the other hand, the adsorption rate for the same adsorbent differs with elements in the order of thorium,uranium, barium and strontium in decreasing rate. It is also affected by pH of the solution and the surface area of adsorbent. In conclusion, we didn't find any different between noncompetition condition and competition condition, and this means that we only have to consider the pH of ground water, the characteristics of the geological materials and the kinds of radioactive element in the case of selection of the places for the radioactive waste disposal.

  • PDF

PROPERTIES OF LOW-PH CEMENT GROUT AS A SEALING MATERIAL FOR THE GEOLOGICAL DISPOSAL OF RADIOACTIVE WASTE

  • Kim, Jin-Seop;Kwon, S.;Choi, Jong-Won;Cho, Gye-Chun
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.459-468
    • /
    • 2011
  • The current solution to the problem of using cementitious material for sealing purposes in a final radioactive waste repository is to develop a low-pH cement grout. In this study, the material properties of a low-pH cement grout based on a recipe used at ONKALO are investigated by considering such factors as pH variation, compressive strength, dynamic modulus, and hydraulic conductivity by using silica fume and micro-cement. From the pH measurements of the hardened cement grout, the required pH (< pH 11) is obtained after 130 days of curing. Although the engineering properties of the low-pH cement grout used in this study are inferior to those of conventional high-pH cement grout, the utilization of silica fume and micro-cement effectively meets the long-term environmental and durability requirements for cement grout in a radioactive waste repository.

Evaluating thermal stability of rare-earth containing wasteforms at extraordinary nuclear disposal conditions

  • Kim, Miae;Hong, Kyong-Soo;Lee, Jaeyoung;Byeon, Mirang;Jeong, Yesul;Kim, Jong Hwa;Um, Wooyong;Kim, Hyun Gyu
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2576-2581
    • /
    • 2021
  • The thermal stability and crystallization behaviors of La2O3 containing B2O3-CaO-Al2O3 glass waste forms were investigated to evaluate the stability of waste form during emergencies in deep geological disposal. For glasses containing 15% La2O3, LaBO3 phases were observed as major crystals from 780 ℃ and exhibited needlelike structures. Al, Ca, and O were homogeneously distributed throughout the entire specimen, while some portions of B and La were concentrated in some parts. By differential thermal analysis at various heating rates, the activation energy for grain growth and the crystallization rate of LaBO3 were calculated to be 12.6 kJ/mol and 199.5 kJ/mol, respectively. These values are comparable to other waste forms being developed for the same purpose.

Comparison of Numerical Analysis Methods of APro for the Total System Performance Assessment of a Geological Disposal System

  • Hyun Ho Cho;Hong Jang;Dong Hyuk Lee;Jung-Woo Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.165-173
    • /
    • 2023
  • Various linear system solvers with multi-physics analysis schemes are compared focusing on the near-field region considering thermal-hydraulic-chemical (THC) coupled multi-physics phenomena. APro, developed at KAERI for total system performance assessment (TSPA), performs a finite element analysis with COMSOL, for which the various combinations of linear system solvers and multi-physics analysis schemes should to be compared. The KBS-3 type disposal system proposed by Sweden is set as the target system and the near-field region, which accounts for most of the computational burden is considered. For comparison of numerical analysis methods, the computing time and memory requirement are the main concerns and thus the simulation time is set up to one year. With a single deposition hole problem, PARDISO and GMRES-SSOR are selected as representative direct and iterative solvers respectively. The performance of representative linear system solvers is then examined through a problem with an increasing number of deposition holes and the GMRES-SSOR solver with a segregated scheme shows the best performance with respect to the computing time and memory requirement. The results of the comparative analysis are expected to provide a good guideline to choose better numerical analysis methods for TSPA.

Long-term Changes in Excavation Damaged Zone(EDZ) and Near-Field due to Thermal-Hydraulic Processes in Host Rock and Bentonite (굴착 손상 영역 및 근계 영역에서의 모암 및 벤토나이트의 열-수리적 거동 특성에 대한 수치해석적 연구)

  • SungGil Jo;YongMin Gwon;HyunJae Kim;JinWon Seo;GyoSoon Kim;JuneMo Koo
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.333-344
    • /
    • 2023
  • To validate the numerical model used in the study of deep disposal of spent nuclear fuel, we selected benchmark cases and performed numerical model validation. We selected the DECOVALEX-THMC Task D_THM1 FEBEX Type benchmark case, which was conducted from 2003 to 2007. We analyzed the thermal-hydraulic (TH) behavior using the finite element program CODE_BRIGHT and verified the results against previous studies. The temperature results were similar to the results of DECOVALEX-THMC Task D. The saturation results showed a similar trend to the results of DECOVALEX-THMC Task D, but the time to reach full saturation was different.

Heat Transfer Modeling by the Contact Condition and the Hole Distance for A-KRS Vertical Disposal (A-KRS 수직 처분공 접촉 조건 및 처분공 간의 거리에 따른 열전달 해석)

  • Kim, Dae-Young;Kim, Seung-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.313-319
    • /
    • 2019
  • The A-KRS (Advanced Korean Reference Disposal System) is the disposal concept for pyroprocessed waste, which has been developed by the Korea Atomic Energy Research Institute. In this disposal concept, the amount of high-level radioactive waste is minimized using pyrochemical process, called pyroprocessing. The produced pyroprocessed waste is then solidified in the form of monazite ceramic. The final product of ceramic wastes will be disposed of in a deep geological repository. By the way, the decay heat is generated due to the radioactive decay of fission products and raises the temperature of buffer materials in the near field of radioactive waste repository. However, the buffer temperature must be kept below $100^{\circ}C$ according to the safety regulation. Usually, the temperature can be controlled by variation of the canister interdistance. However, KAERI has modelled thermal analysis under the boundary condition, where the waste canisters are in direct contact with each other. Therefore, a reliable temperature analysis in the disposal system may fail because of unknown thermal resistence values caused by the spatial gap between waste canisters. In the present work, we have performed thermal analyses considering the gap between heating elements and canisters at the beginning of canister loading into the radioactive waste repository. All thermal analyses were performed using the COMSOL software package.

A Numerical Study of the Performance Assessment of Coupled Thermo-Hydro-Mechanical (THM) Processes in Improved Korean Reference Disposal System (KRS+) for High-Level Radioactive Waste (수치해석을 활용한 향상된 한국형 기준 고준위방사성폐기물 처분시스템의 열-수리-역학적 복합거동 성능평가)

  • Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.221-242
    • /
    • 2021
  • A numerical study of the performance assesment of coupled thermo-hydro-mechanical (THM) processes in improved Korean reference disposal system (KRS+) for high-level radioactive waste is conducted using TOUGH2-MP/FLAC3D simulator. Decay heat from high-level radioactive waste increases the temperature of the repository, and it decreases as decay heat is reduced. The maximum temperature of the repository is below a maximum temperature criterion of 100℃. Saturation of bentonite buffer adjacent to the canister is initially reduced due to pore water evaporation induced by temperature increase. Bentonite buffer is saturated 250 years after the disposal of high-level radioactive waste by inflow of groundwater from the surrounding rock mass. Initial saturation of rock mass decreases as groundwater in rock mass is moved to bentnonite buffer by suction, but rock mass is saturated after inflow of groundwater from the far-field area. Stress changes at rock mass are compared to the Mohr-Coulomb failure criterion and the spalling strength in order to investigate the potential rock failure by thermal stress and swelling pressure. Additional simulations are conducted with the reduced spacing of deposition holes. The maximum temperature of bentonite buffer exceeds 100℃ as deposition hole spacing is smaller than 5.5 m. However, temperature of about 56.1% volume of bentonite buffer is below 90℃. The methodology of numerical modeling used in this study can be applied to the performance assessment of coupled THM processes for high-level radioactive waste repositories with various input parameters and geological conditions such as site-specific stress models and geothermal gradients.