• Title/Summary/Keyword: geographic routing

Search Result 87, Processing Time 0.024 seconds

Design and Evaluation of a Fuzzy Hierarchical Location Service for Mobile Ad Hoc Networks

  • Bae, Ihn-Han;Kim, Yoon-Jeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.757-766
    • /
    • 2007
  • Location services are used in mobile ad hoc and hybrid networks to locate either the geographic position of a given node in the network or a data item. One of the main usages of position location services is presented in location based routing algorithms. In particular, geographic routing protocols can route messages more efficiently to their destinations based on the destination node's geographic position, which is provided by a location service. In this paper, we propose an adaptive location service on the basis of fuzzy logic called FHLS (Fuzzy Hierarchical Location Service) for mobile ad hoc networks. The adaptive location update scheme using the fuzzy logic on the basis of the mobility and the call preference of mobile nodes is used by the FHLS. The performance of the FHLS is to be evaluated by a simulation, and compared with that of existing HLS scheme.

  • PDF

QLGR: A Q-learning-based Geographic FANET Routing Algorithm Based on Multi-agent Reinforcement Learning

  • Qiu, Xiulin;Xie, Yongsheng;Wang, Yinyin;Ye, Lei;Yang, Yuwang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.4244-4274
    • /
    • 2021
  • The utilization of UAVs in various fields has led to the development of flying ad hoc network (FANET) technology. In a network environment with highly dynamic topology and frequent link changes, the traditional routing technology of FANET cannot satisfy the new communication demands. Traditional routing algorithm, based on geographic location, can "fall" into a routing hole. In view of this problem, we propose a geolocation routing protocol based on multi-agent reinforcement learning, which decreases the packet loss rate and routing cost of the routing protocol. The protocol views each node as an intelligent agent and evaluates the value of its neighbor nodes through the local information. In the value function, nodes consider information such as link quality, residual energy and queue length, which reduces the possibility of a routing hole. The protocol uses global rewards to enable individual nodes to collaborate in transmitting data. The performance of the protocol is experimentally analyzed for UAVs under extreme conditions such as topology changes and energy constraints. Simulation results show that our proposed QLGR-S protocol has advantages in performance parameters such as throughput, end-to-end delay, and energy consumption compared with the traditional GPSR protocol. QLGR-S provides more reliable connectivity for UAV networking technology, safeguards the communication requirements between UAVs, and further promotes the development of UAV technology.

Ad Hoc Routing Method Based on Betweenness Centrality and Location Information for Unmanned Ground System Networks (지상 무인로봇체계 네트워크를 위한 매개 중심도와 위치정보 기반 Ad Hoc 라우팅)

  • Ahn, Hyochun;Yim, Jinhyuk;Ko, Young-Bae;Choi, HyungSeok;Kwon, DaeHoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.4
    • /
    • pp.441-450
    • /
    • 2016
  • Wireless multi-hop communication is one of the key technologies to operate Unmanned Ground System (UGS) networks efficiently. Conventionally a lot of routing protocol has been developed and studied for multi-hop networks like Mobile Ad-hoc Network (MANET). However, the routing protocol for the unique environment of the UGS requires further studies, since conventional routing protocols cannot be used itself for UGS networks. In this paper, we propose the Betweenness Centrality based Geographic Routing (BCGR) which considers the main function of UGS. BCGR utilizes expanded ego betweenness centrality, mobility and location information error, respectively. We have conducted a simulation study for evaluating the performance of the BCGR using ns-3, and our simulation results show that BCGR outperforms the conventional routing protocols such as AODV and GPSR in terms of end-to-end transmission reliability, throughput and delay.

Self-Adaptive Location Checking Mechanism in Mobile Ad-hoc Networks (모바일 애드혹 네트워크에서 자가 적응형 위치 검증 기법)

  • Youn, Joo-Sang;Kim, Young-Hyun;Pack, Sang-Heon
    • The KIPS Transactions:PartC
    • /
    • v.17C no.3
    • /
    • pp.281-290
    • /
    • 2010
  • In geographic forwarding algorithms, traditional route maintenance requires mobile nodes periodically exchange beacon messages with their neighbors. In beacon message based forwarding scheme, a longer interval reduces the number of beacons needed, but may result in significant location errors. Conversely, a shorter interval guarantees more accurate location information, but induces control overheads.Therefore, the fixed or dynamic interval scheme based forwarding schemes cannot adapt well to different mobility environments. Also, existing schemes result in the uncertainty of neighbor node's position in the forwarding table of mobile node. Therefore, this paper presents a self-adaptive location checking mechanism based proactive geo-routing algorithm for beacon-based geographic routing. Simulation results show that the proposed routing algorithm not only significantly increases the relay transmission rate but also guarantees the high end-to-end packet delivery in low and high mobility environments.

Void Less Geo-Routing for Wireless Sensor Networks

  • Joshi, Gyanendra Prasad;Lee, Chae-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.433-435
    • /
    • 2007
  • Geographic wireless sensor networks use position information for Greedy routing. Greedy routing works well in dense network where as in sparse network it may fail and require the use of recovery algorithms. Recovery algorithms help the packet to get out of the communication void. However, these algorithms are generally costlier for resource constrained position based wireless sensor type networks. In the present work, we propose a Void Avoidance Algorithm (VAA); a novel idea based on virtual distance upgrading that allows wireless sensor nodes to remove all stuck nodes by transforming the routing graph and forward packet using greedy routing only without recovery algorithm. In VAA, the stuck node upgrades distance unless it finds next hop node which is closer to the destination than itself. VAA guarantees the packet delivery if there is a topologically valid path exists. NS-2 is used to evaluate the performance and correctness of VAA and compared the performance with GPSR. Simulation results show that our proposed algorithm achieves higher delivery ratio, lower energy consumption and efficient path.

  • PDF

A Beeline Routing Protocol for Heterogeneous WSN for IoT-Based Environmental Monitoring

  • Sahitya, G.;Balaji, N.;Naidu, C.D.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.67-72
    • /
    • 2022
  • A wireless sensor network (WSN), with its constrained sensor node energy supply, needs an energy-efficient routing technique that maximises overall system performance. When rumours are routed using a random-walk routing algorithm, which is not highly scalable, spiral pathways may appear. Because humans think a straight line is the quickest route between two sites and two straight lines in a plane are likely to intersect, straight-line routing (SLR) constructs a straight path without the aid of geographic information. This protocol was developed for WSNs. As a result, sensor nodes in WSNs use less energy when using SLR. Using comprehensive simulation data, we show that our upgraded SLR systems outperform rumour routing in terms of performance and energy conservation.

A Geographic Routing Algorithm to Prolong the Lifetime of MANET (MANET에서의 네트워크 수명을 연장시키는 위치기반 라우팅 기법)

  • Lee, Ju-Young
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.119-125
    • /
    • 2010
  • In ad-hoc networks, dynamically reconfigurable and temporary wireless networks, all mobile devices cooperatively maintain network connectivity with no assistance of base stations while they have limited amounts of energy that is used in different rates depending on the power level. Since every node has to perform the functions of a router, if some nodes die early due to lack of energy, it will not be possible for other nodes to communicate with each other and network lifetime will be shortened. Consequently, it is very important to develop a technique to efficiently consume the limited amounts of energy resources so that the network lifetime is maximized. In this paper, geographical localized routing is proposed to help making smarter routing decision using only local information and reduce the routing overhead. The proposed localized routing algorithm selects energy-aware neighbors considering the transmission energy and error rate over the wireless link, and the residual energy of the node, which enables nodes to achieve balanced energy-consumption and the network lifetime to prolong.

Multihop Vehicle-to-Infrastructure Routing Based on the Prediction of Valid Vertices for Vehicular Ad Hoc Networks

  • Shrestha, Raj K.;Moh, Sangman;Chung, IlYong;Shin, Heewook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.4
    • /
    • pp.243-253
    • /
    • 2010
  • Multihop data delivery in vehicular ad hoc networks (VANETs) suffers from the fact that vehicles are highly mobile and inter-vehicle links are frequently disconnected. In such networks, for efficient multihop routing of road safety information (e.g. road accident and emergency message) to the area of interest, reliable communication and fast delivery with minimum delay are mandatory. In this paper, we propose a multihop vehicle-to-infrastructure routing protocol named Vertex-Based Predictive Greedy Routing (VPGR), which predicts a sequence of valid vertices (or junctions) from a source vehicle to fixed infrastructure (or a roadside unit) in the area of interest and, then, forwards data to the fixed infrastructure through the sequence of vertices in urban environments. The well known predictive directional greedy routing mechanism is used for data forwarding phase in VPGR. The proposed VPGR leverages the geographic position, velocity, direction and acceleration of vehicles for both the calculation of a sequence of valid vertices and the predictive directional greedy routing. Simulation results show significant performance improvement compared to conventional routing protocols in terms of packet delivery ratio, end-to-end delay and routing overhead.

THERA: Two-level Hierarchical Hybrid Road-Aware Routing for Vehicular Networks

  • Abbas, Muhammad Tahir;SONG, Wang-Cheol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3369-3385
    • /
    • 2019
  • There are various research challenges in vehicular ad hoc networks (VANETs) that need to be focused until an extensive deployment of it becomes conceivable. Design and development of a scalable routing algorithm for VANETs is one of the critical issue due to frequent path disruptions caused by the vehicle's mobility. This study aims to provide a novel road-aware routing protocol for vehicular networks named as Two-level hierarchical Hybrid Road-Aware (THERA) routing for vehicular ad hoc networks. The proposed protocol is designed explicitly for inter-vehicle communication. In THERA, roads are distributed into non-overlapping road segments to reduce the routing overhead. Unlike other protocols, discovery process does not flood the network with packet broadcasts. Instead, THERA uses the concept of Gateway Vehicles (GV) for the discovery process. In addition, a route between source and destination is flexible to changing topology, as THERA only requires road segment ID and destination ID for the communication. Furthermore, Road-Aware routing reduces the traffic congestion, bypasses the single point of failure, and facilitates the network management. Finally yet importantly, this paper also proposes a probabilistical model to estimate a path duration for each road segment using the highway mobility model. The flexibility of the proposed protocol is evaluated by performing extensive simulations in NS3. We have used SUMO simulator to generate real time vehicular traffic on the roads of Gangnam, South Korea. Comparative analysis of the results confirm that routing overhead for maintaining the network topology is smaller than few previously proposed routing algorithms.

A Competition-based Algorithm for Routing Discovery and Repair in Large-scale VANET

  • Wu, Cheng;Wang, Lujie;Wang, Yiming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5729-5744
    • /
    • 2017
  • Vehicular Ad Hoc Networks (VANET) in the large-scale road section usually have typical characteristics of large number of vehicles and unevenly distribution over geographic spaces. These two inherent characteristics lead to the unsatisfactory performance of VANETs. This poor performance is mainly due to fragile communication link and low dissemination efficiency. We propose a novel routing mechanism to address the issue in the paper, which includes a competition-based routing discovery with priority metrics and a local routing repair strategy. In the routing discovery stage, the algorithm uses adaptive scheme to select a stable route by the priorities of routing metrics, which are the length of each hop, as well as the residual lifetime of each link. Comparisons of different ratios over link length and link stability further show outstanding improvements. In the routing repair process, upstream and downstream nodes also compete for the right to establish repair process and to remain as a member of the active route after repair. Our simulation results confirm the improved performance of the proposed algorithm.