• Title/Summary/Keyword: geodesic path

Search Result 12, Processing Time 0.026 seconds

Optimal Design of Filament Wound Structures under Internal Pressure based on the Semi-geodesic Path Algorithm (준측지궤적 알고리즘을 적용한 내압을 받는 필라멘트 와인딩 된 복합재 축대칭 구조물의 최적설계)

  • 김철웅;강지호;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.179-182
    • /
    • 2003
  • This research aims to establish an optimal design method of filament wound structures. So far, most design and manufacturing of filament wound structures have been based on manufacturing experiences, and there is no established design rule. In this research, possible winding patterns considering the windability and the slippage between fiber and mandrel surface were calculated using the semi-geodesic path algorithm. In addition, finite element analyses using a commercial code, ABAQUS, were performed to predict the behavior of filament wound structures. On the basis of the semi-geodesic path algorithm and the finite element analysis method, filament wound structures were designed using the genetic algorithm.

  • PDF

High-Frequency Analysis of Electromagnetic Backscattering from an Ellipsoid (타원체의 역방향 산란 해석)

  • Shim, Jae-Ruen
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.685-688
    • /
    • 2005
  • In this study, an efficient algorithm for the numerical search of the geodesic path of the creeping wave on a doubly curved surface is developed. The ellipsoid as a doubly curved surface is studied because of its three dimensional nature in that it can be used to simulate the body of an aircraft, or a missile body. Numerical result of the geodesic path on an ellipsoid is given.

  • PDF

Enumeration of axial rotation

  • Yoon, Yong-San
    • Advances in biomechanics and applications
    • /
    • v.1 no.2
    • /
    • pp.85-93
    • /
    • 2014
  • In this paper, two procedures of enumerating the axial rotation are proposed using the unit sphere of the spherical rotation coordinate system specifying 3D rotation. If the trajectory of the movement is known, the integration of the axial component of the angular velocity plus the geometric effect equal to the enclosed area subtended by the geodesic path on the surface of the unit sphere. If the postures of the initial and final positions are known, the axial rotation is determined by the angular difference from the parallel transport along the geodesic path. The path dependency of the axial rotation of the three dimensional rigid body motion is due to the geometric effect corresponding to the closed loop discontinuity. Firstly, the closed loop discontinuity is examined for the infinitesimal region. The general closed loop discontinuity can be evaluated by the summation of those discontinuities of the infinitesimal regions forming the whole loop. This general loop discontinuity is equal to the surface area enclosed by the closed loop on the surface of the unit sphere. Using this quantification of the closed loop discontinuity of the axial rotation, the geometric effect is determined in enumerating the axial rotation. As an example, the axial rotation of the arm by the Codman's movement is evaluated, which other methods of enumerating the axial rotations failed.

Analysis of Filament Wound Pressure Tank Considering Winding Angle Variation in Thickness Direction (두께 방향의 와인딩 각도 변화를 고려한 필라멘트 와인딩 된 압력탱크의 해석)

  • 김철웅;박재성;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.211-214
    • /
    • 2000
  • Filament wound pressure vessels have been studied for the efficient design tool to consider the variation of fiber angles through-the thickness direction. Filament winding patterns were simulated from semi-geodesic fiber path equation to calculate fiber path on arbitrary surface. Finite element analyses were performed considering fiber angle variation in longitudinal and thickness directions by ABAQUS. For the finite element modeling of the pressure tank, the 3-dimensional layered solid element was utilized. From the stress results of pressure tanks, maximum stress criterion in transverse direction was applied to modify material properties for failed region. In the end of each load increment, resultant layer stresses were compared with a failure criterion and properties were reduced to 1/10 for a failed layer. Results of progressive failure analysis were compared with two experimental data.

  • PDF

O Analysis of Filament Wound Pressure Tank Considering Winding Angle Variation In Thickness Direction (두께 방향의 와인딩 각도 변화를 고려한 필라멘트 와인딩 된 압력탱크의 해석)

  • 김철웅;박재성;홍창선;김천곤
    • Composites Research
    • /
    • v.13 no.2
    • /
    • pp.51-60
    • /
    • 2000
  • Filament wound pressure vessels have been studied for the efficient design tool to consider the variation of fiber angles through-the thickness direction. Filament winding patterns were simulated from semi-geodesic fiber path equation to calculate fiber path on arbitrary surface. Finite element analyses were performed considering fiber angle variation in longitudinal and thickness directions by ABAQUS. For the finite element modeling of the pressure tank, the 3-dimensional layered solid element was utilized. From the stress results of pressure tanks, maximum stress criterion in transverse direction was applied to modify material properties for failed region. In the end of each load increment, resultant layer stresses were compared with a failure criterion and properties were reduced to 1/10 for a failed layer. Results of progressive failure analysis were compared with two experimental data.

  • PDF

A Planar Geodesic Constrained On the Maximum Curvature and with Prescribed Initial and Terminal Directions: An Optimal Control Approach

  • Lim, Jong-In;Chung, Ee-Suk;Ree, Sang-Bok;Oh, Hyung-Sik;Chung, Sung-Jin;Kang, Suk-Ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.4
    • /
    • pp.105-114
    • /
    • 1993
  • In this article, a planar geodesic (2-dimensional minimum length curve between two points) on which the maximum curvature is constrained and with prescribed initial and terminal directions is studied. A generic problem is formulated by the minimum-time optimal control problem in free terminal time. It is shown that the optimal path ($G^2$) may contain a singular arc or not and that the general types of $G^2$ can he classified into the 3 classes of control sequences. Finally, the explicit form of $G^2$ is derived geometrically as well as algebraically form the main theorem of this article.

  • PDF

Filament Band Winding Simulation for Fiber Reinforced Cylindrical Pressure Vessels (FRP의 원통형 압력 용기제작을 위한 필라멘트 밴드의 감김 시뮬레이션)

  • Yun, Jaedeuk;Fu, Jianhui;Jung, Yoongho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.1
    • /
    • pp.19-28
    • /
    • 2014
  • The filament winding method is widely used to manufacture products of fiber reinforced plastics (FRP), such as high pressure vessels, launch tubes and pipes. For reducing winding time, the method of winding by filament band which consists of several filament fibers is used. NC winding machine is used for precise winding and NC path is needed. Before filament winding, users should verify that winding path which presented by a line is appropriate by filament winding simulation. Also, the used length of each filament is different. So, if the peak filament exhausted, it causes to stop manufacturing. In this research, we developed software which visualizes 3D graphic of filament band winding path and simulates winding process on real time. And we proposed algorithm about calculation of each filament usage. We use geodesic equation for generating filament band surface and calculating the usage length of each filament.

Influence of fiber paths on buckling load of tailored conical shells

  • Naderi, Ali-Asghar;Rahimi, Gholam-Hossein;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.375-387
    • /
    • 2014
  • The purpose of this paper is to propose a method for evaluation of varying stiffness coefficients of tailored conical shells (TCS). Furthermore, a comparison between buckling loads of these shells under axial load with the different fiber path is performed. A circular truncated conical shell subjected to axial compression is taken into account. Three different theoretical path containing geodesic path, constant curvature path and constant angle path has been considered to describe the angle variation along the cone length, along cone generator of a conical shell are offered. In the TCS with the arbitrary fiber path, the thickness and the ply orientation are assumed to be functions of the shell coordinates and influencing stiffness coefficients of the structure. The stiffness coefficients and the buckling loads of shells are calculated basing on classical shells theory (CST) and using finite-element analysis (FEA) software. The obtained results for TCS with arbitrary fiber path, thickness and ply orientation are derived as functions of shell longitudinal coordinate and influencing stiffness coefficients of structures. Furthermore, the buckling loads based on fiber path and ply orientation at the start of tailored fiber get to be different. The extent of difference for tailored fiber with start angle lower than 20 degrees is not significant. The results in this paper show that using tailored fiber placement could be applied for producing conical shells in order to have greater buckling strengths and lower weight. This work demonstrates the use of fiber path definitions for calculated stiffness coefficients and buckling loads of conical shells.

Optimal design of composite pressure vessel for fuel cell vehicle using genetic algorithm (유전자 알고리즘을 이용한 수소 연료 자동차용 복합재 압력용기의 최적설계)

  • Kang, Sang-Guk;Kim, Myung-Gon;Kim, Chun-Gon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.23-27
    • /
    • 2007
  • To store hydrogen with high pressure is one of key technologies in developing FCVs (fuel cell vehicles). Especially, metal lined composite structure, which is called Type 3, is expected to effectively stand highly pressurized hydrogen since it has high specific strength and stiffness as well as excellent storage ability. However, it has many difficulties to design Type 3 vessels because of their complex geometry, fabrication process variables, etc. In this study, therefore, optimal design of Type 3 vessels was performed in consideration of such actual circumstances using genetic algorithm. Additionally, detailed finite element analysis was followed for the optimal result.

  • PDF

Optimal valve installation of water distribution network considering abnormal water supply scenarios (비정상 물공급 시나리오를 고려한 상수도관망 최적 밸브위치 결정)

  • Lee, Seungyub;Jung, Donghwi
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.719-728
    • /
    • 2019
  • Valve in water distribution network (WDN), that controls the flow in pipes, is used to isolate a segment (a part of WDN) under abnormal water supply conditions (e.g., pipe breakage, water quality failure event). The segment isolation degrades pressure and water serviceability in neighboring area during the water service outage of the segment. Recent hydraulic and water quality failure events reported encouraging WDN valve installation based on various abnormal water supply scenarios. This study introduces a scenario-based optimal valve installation approach to optimize the number of valves, the amount of undelivered water, and a shortest water supply path indicator (i.e., Hydraulic Geodesic Index). The proposed approach is demonstrated in the valve installation of Pescara network, and the optimal valve sets are obtained under multiple scenarios and compared to the existing valve set. Pressure-driven analysis (PDA) scheme is used for a network hydraulic simulation. The optimal valve set derived from the proposed method has 19 fewer valves than the existing valve set in the network and the amount of undelivered water was also lower for the optimal valve set. Reducing the reservoir head requires a greater number of valves to achieve the similar functionality of the WDN with the optimal valve set of the original reservoir head. This study also compared the results of demand-driven analysis (DDA) and the PDA and confirmed that the latter is required for optimal valve installation.