• Title/Summary/Keyword: geochemical technique

Search Result 34, Processing Time 0.022 seconds

Effect on the Measurement of Trace Element by Pressure Bomb and Conventional Teflon Vial Methods in the Digestion Technique (압력용기 산분해법과 테플론 바이알에서의 산분해법이 미량원소의 함량측정에 미치는 영향)

  • Lee, Seung-Gu;Kim, Taehoon;Tanaka, Tsuyoshi;Lee, Seung Ryeol;Lee, Jong Ik
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.107-119
    • /
    • 2016
  • Trace element abundances in the igneous rocks are important data for petrogenetic interpretation. Their concentrations are generally measured using ICP-MS from the dissolved solution. The acid digestion of rock powder can be performed by conventional teflon vial or pressure bomb. In this paper, we investigated a problem that happened during acid digestion experiment using conventional teflon vial or pressure bomb of BCR2 and GSP2 USGS rock standard materials. The results show that the measured concentrations of the elements like Cr, Ni, Zn, Ta, W in the BCR2 are different from the recommended values of USGS whereas those of the elements like Rb, Sr, Zr, Hf, Ta, W in the GSP2 are different from those values. Our experiment shows that defect of specific elements like Cr, Ni may happen during the sample digestion. Our results also indicate that the Cr, Ni, W, Zr, Hf, Ta concentration obtained based on an acid digestion of geological samples need to be careful in their geochemical interpretation.

GIS-based Spatial Integration and Statistical Analysis using Multiple Geoscience Data Sets : A Case Study for Mineral Potential Mapping (다중 지구과학자료를 이용한 GIS 기반 공간통합과 통계량 분석 : 광물 부존 예상도 작성을 위한 사례 연구)

  • 이기원;박노욱;권병두;지광훈
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.91-105
    • /
    • 1999
  • Spatial data integration using multiple geo-based data sets has been regarded as one of the primary GIS application issues. As for this issue, several integration schemes have been developed as the perspectives of mathematical geology or geo-mathematics. However, research-based approaches for statistical/quantitative assessments between integrated layer and input layers are not fully considered yet. Related to this niche point, in this study, spatial data integration using multiple geoscientific data sets by known integration algorithms was primarily performed. For spatial integration by using raster-based GIS functionality, geological, geochemical, geophysical data sets, DEM-driven data sets and remotely sensed imagery data sets from the Ogdong area were utilized for geological thematic mapping related by mineral potential mapping. In addition, statistical/quantitative information extraction with respective to relationships among used data sets and/or between each data set and integrated layer was carried out, with the scope of multiple data fusion and schematic statistical assessment methodology. As for the spatial integration scheme, certainty factor (CF) estimation and principal component analysis (PCA) were applied. However, this study was not aimed at direct comparison of both methodologies; whereas, for the statistical/quantitative assessment between integrated layer and input layers, some statistical methodologies based on contingency table were focused. Especially, for the bias reduction, jackknife technique was also applied in PCA-based spatial integration. Through the statistic analyses with respect to the integration information in this case study, new information for relationships of integrated layer and input layers was extracted. In addition, influence effects of input data sets with respect to integrated layer were assessed. This kind of approach provides a decision-making information in the viewpoint of GIS and is also exploratory data analysis in conjunction with GIS and geoscientific application, especially handing spatial integration or data fusion with complex variable data sets.

Optimization of fractionation efficiency (FE) and throughput (TP) in a large scale splitter less full-feed depletion SPLITT fractionation (Large scale FFD-SF) (대용량 splitter less full-feed depletion SPLITT 분획법 (Large scale FFD-SF)에서의 분획효율(FE)및 시료처리량(TP)의 최적화)

  • Eum, Chul Hun;Noh, Ahrahm;Choi, Jaeyeong;Yoo, Yeongsuk;Kim, Woon Jung;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.453-459
    • /
    • 2015
  • Split-flow thin cell fractionation (SPLITT fractionation, SF) is a particle separation technique that allows continuous (and thus a preparative scale) separation into two subpopulations based on the particle size or the density. In SF, there are two basic performance parameters. One is the throughput (TP), which was defined as the amount of sample that can be processed in a unit time period. Another is the fractionation efficiency (FE), which was defined as the number % of particles that have the size predicted by theory. Full-feed depletion mode (FFD-SF) have only one inlet for the sample feed, and the channel is equipped with a flow stream splitter only at the outlet in SF mode. In conventional FFD-mode, it was difficult to extend channel due to splitter in channel. So, we use large scale splitter-less FFD-SF to increase TP from increase channel scale. In this study, a FFD-SF channel was developed for a large-scale fractionation, which has no flow stream splitters (‘splitter less’), and then was tested for optimum TP and FE by varying the sample concentration and the flow rates at the inlet and outlet of the channel. Polyurethane (PU) latex beads having two different size distribution (about 3~7 µm, and about 2~30 µm) were used for the test. The sample concentration was varied from 0.2 to 0.8% (wt/vol). The channel flow rate was varied from 70, 100, 120 and 160 mL/min. The fractionated particles were monitored by optical microscopy (OM). The sample recovery was determined by collecting the particles on a 0.1 µm membrane filter. Accumulation of relatively large micron sized particles in channel could be prevented by feeding carrier liquid. It was found that, in order to achieve effective TP, the concentration of sample should be at higher than 0.4%.

A Comprehensive Review of Geological CO2 Sequestration in Basalt Formations (현무암 CO2 지중저장 해외 연구 사례 조사 및 타당성 분석)

  • Hyunjeong Jeon;Hyung Chul Shin;Tae Kwon Yun;Weon Shik Han;Jaehoon Jeong;Jaehwii Gwag
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.311-330
    • /
    • 2023
  • Development of Carbon Capture and Storage (CCS) technique is becoming increasingly important as a method to mitigate the strengthening effects of global warming, generated from the unprecedented increase in released anthropogenic CO2. In the recent years, the characteristics of basaltic rocks (i.e., large volume, high reactivity and surplus of cation components) have been recognized to be potentially favorable in facilitation of CCS; based on this, research on utilization of basaltic formations for underground CO2 storage is currently ongoing in various fields. This study investigated the feasibility of underground storage of CO2 in basalt, based on the examination of the CO2 storage mechanisms in subsurface, assessment of basalt characteristics, and review of the global research on basaltic CO2 storage. The global research examined were classified into experimental/modeling/field demonstration, based on the methods utilized. Experimental conditions used in research demonstrated temperatures ranging from 20 to 250 ℃, pressure ranging from 0.1 to 30 MPa, and the rock-fluid reaction time ranging from several hours to four years. Modeling research on basalt involved construction of models similar to the potential storage sites, with examination of changes in fluid dynamics and geochemical factors before and after CO2-fluid injection. The investigation demonstrated that basalt has large potential for CO2 storage, along with capacity for rapid mineralization reactions; these factors lessens the environmental constraints (i.e., temperature, pressure, and geological structures) generally required for CO2 storage. The success of major field demonstration projects, the CarbFix project and the Wallula project, indicate that basalt is promising geological formation to facilitate CCS. However, usage of basalt as storage formation requires additional conditions which must be carefully considered - mineralization mechanism can vary significantly depending on factors such as the basalt composition and injection zone properties: for instance, precipitation of carbonate and silicate minerals can reduce the injectivity into the formation. In addition, there is a risk of polluting the subsurface environment due to the combination of pressure increase and induced rock-CO2-fluid reactions upon injection. As dissolution of CO2 into fluids is required prior to injection, monitoring techniques different from conventional methods are needed. Hence, in order to facilitate efficient and stable underground storage of CO2 in basalt, it is necessary to select a suitable storage formation, accumulate various database of the field, and conduct systematic research utilizing experiments/modeling/field studies to develop comprehensive understanding of the potential storage site.