• Title/Summary/Keyword: geochemical hazard

Search Result 20, Processing Time 0.023 seconds

Geochemical baseline mapping for geochemical hazard assessment (지구화학적 재해 평가를 위한 지화학도 작성 및 기준치 설정)

  • 신성천;염승준;황상기
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.215-233
    • /
    • 2000
  • The national geochemical baseline mapping project has been conducted since 1996 to establish a quantitative assessment system for geochemical hazards in natural environments. The geochemical image maps have been edited for thirty-six elements(i.e., 10 major oxides and 26 trace elements) in light sediments, finer fraction than 150 $\mu$m, collected from first- to second-order streams(totally 11,000) over five provinces in the western half(ca. 45,000 km$^2$) of Korea. Natural background values of the elements were given for different geological environments. Based on the statistics, geochemical baselines were newly obtained for a quantitative hazard assessment on toxicity of heavy metals and deficiency of essential nutrients. Some chosen examples of geochemical hazards are presented based on new geochemical image maps and related baseline data.

  • PDF

Geochemical characteristics on the petrological groups of stream sediments and water in primary channels of the Jangheung area, Korea (장흥지역 1차수계 하상퇴적물의 지질집단별 지구화학적 특성과 하천수에 대한 연구)

  • 박영석;김종균;한민수;김용준;장우석;신성천
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.509-521
    • /
    • 2002
  • The purpose of this study is to find out geochemical characteristics of stream sediments which are good indicator of geochemical hazard valuation and water in primary channels of the Jangheung area. We separated three groups which were granitoid area, granite gneiss area and tuffeous area by petrological properties. Physical and chemical characteristics of stream water such as temperature, pH, and EC were measured in the field between 1999 and 2001 and stream sediments samples were collected from April to May in 1999. For the chemical analysis of stream sediments samples, XRF, ICP-AES and NAA were used. The contents of the major elements had a similar contents in three groups and those of rare earth elements in granite gneiss area were lower value than those of other two groups. Zn and Cu were higher value than the other toxic elements. Through the enrichment factor and enrichment index features of the elements, we knew that $Fe_2O_3$, MgO, $TiO_2$, MnO and Eu, Yb of the tuffeous area samples and Co, Cr, Zn were enriched.

Geochemical Implication of Rare Earth Element from Yellow sand (Asian Dust) at Daejeon Area, Korea: A Preliminary Study for Clarifying Source Area of Yellow Sand (대전지역 황사(아시아 먼지)내 희토류원소 분포도의 지구화학적 특성-근원지 규명을 위한 초기연구)

  • Lee, Seung-Gu;Youm, Seung-Jun
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.44-50
    • /
    • 2008
  • A geochemical technique based on rare earth element geochemistry was used to clarity the source of the Asian dust (Yellow sand) in the Daejeon area. The Asian dusts were collected 4 times during 31th March- 2nd April and 25th May-27th May 2007. The Yellow sand shows PAAS (Post Archean Australian Shale)-normalized REE pattern of the flattened LREE and slightly depleted LREE without Eu anomaly, whereas the Daejeon soil has slightly enriched LREE and depleted HREE with negative Eu anomaly. Our results show that REE patterns of the Asian dust are LREE-flattened similar to those of the sediment from the south-eastern part of Ordos desert. This suggests that Asian dust in the Daejeon area might be derived from the south-eastern part of Ordos desert.

Geochemical Characteristics on Geological Groups of Stream Sediment in the Boseong-Hwasun Area, Korea (보성-화순지역 하상퇴적물에 대한 지질집단별 지구화학적 특성)

  • Park, Young-Seog;Kim, Jong-Kyun
    • Journal of the Korean earth science society
    • /
    • v.32 no.7
    • /
    • pp.707-718
    • /
    • 2011
  • We study the natural background and geochemical characteristics on geological groups of stream sediment in the Boseong-Hwasun area. We collected 186ea stream sediment samples along the primary channels and dried them naturally in laboratory. The contents of major, trace and rare earth elements were determined by XRF, ICP-AES and NAA analysis methods. In order to know the natural background and geochemical characteristics of geological groups, we classified the studied area into granitic gneiss (GGn) area and porphyroblastic gneiss (PGn) area. The contents range of major elements for GGn area is $SiO_2$ 45.5-73.09 wt.%, $Al_2O_3$ 12-20.76 wt.%, $Fe_2O_3$(T) 3.72-8.85 wt.%, $K_2O$ 2.38-4.2 wt.%, MgO 0.75-2.77 wt.%, $Na_2O$ 0.78-1.88 wt.%, CaO 0.27-2.1 wt.%, $TiO_2$ 0.56-1.72 wt.%, $P_2O_5$ 0.06-0.73 wt.% and MnO 0.03-0.95 wt.%, and for PGn area it is $SiO_2$ 43.74-70.71 wt.%, $Al_2O_3$ 11.54-25.05 wt.%, $Fe_2O_3$(T) 3.44-13.46 wt.%, $K_2O$ 2.08-3.86 wt.%, MgO 0.65-2.99 wt.%, $Na_2O$ 0.63-1.7 wt.%, CaO 0.35-2.07 wt.%, $TiO_2$ 0.68-4.17 wt.%, $P_2O_5$ 0.1-0.31 wt.% and MnO 0.07-0.33 wt.%. The contents range of hazard elements for GGn area is Cr 41.7-242 ppm, Co 7.6-25.1 ppm, Ni 12-61 ppm, Cu 10-47 ppm, Zn 48.5-412 ppm, Pb 17-215 ppm, and for PGn area, it is Cr 29.6-454 ppm, Co 5.9-53.7 ppm, Ni 8.7-287 ppm, Cu 6.4-134 ppm, Zn 43.6-370 ppm, Pb 15-37 ppm area. There is a good correlation between Cr and MgO and Co among $Al_2O_3$, $Fe_2O_3$(T), MgO and Ni among $Fe_2O_3$(T), CaO, MgO whereas Cu, Zn and Pb have a low correlation for major elements in GGn area. Generally Cr, Co, Ni, and Cu have a good correlation with major elements, but a low correlation with Zn and Pb in PGn area.

Radiological and Geochemical Assessment of Different Rock Types from Ogun State in Southwestern Nigeria

  • Olabamiji Aliu Olayinka;Alausa Shamsideen Kunle
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.5
    • /
    • pp.251-261
    • /
    • 2023
  • Background: This paper deals with the study of natural radioactivity in rocks from Ogun State in Southwestern Nigeria. The aim is to determine radiation emissions from rocks in order to estimate radiation hazard indices. Objectives: The following objectives were targeted: 1. To determine radiation emissions from each type of rocks; 2. To estimate radiation hazard indices based on the rocks; 3. To correlate the activity concentrations of radionuclides with major oxides. Methods: The samples were analyzed using a NaI (Tl) gamma ray spectrometric detector and PerkinElmer AAnalyst 400 AAS spectrometer. Results: The activity of 40K, 226Ra, and 232Th were found in order of decreasing magnitude from pegmatite>granite>migmatite. In contrast, lower concentrations were found in shale, phosphate, clay stone, sandstone and limestone. The mean absorbed doses were 125±23 nGyh-1 (migmatite), 74±13 nGy/h (granite), 72±13 nGyh-1 (pegmatite), 64±09 nGyh-1 (quartzite), 45±16 nGyh-1 (shale), 41±09 nGyh-1 (limestone), 41±11 nGyh-1 (clay stone), 24±03 nGyh-1 (phosphate), and 21±10 nGyh-1 (sandstone). The outdoor effective dose rates in all rock samples were slightly higher than the world average dose value of 0.34 mSvy-1. The percentage composition of SiO2 in the rock samples was above 50 wt% except for in the limestone, shale and phosphate. Al2O3 ranged from 4.10~21.24 wt%, Fe2O3 from 0.39~7.5 wt%, and CaO from 0.09-46.6 wt%. In addition, Na2O and K2O were present in at least 5 wt%. Other major oxides, including TiO2, P2O5, K2O, MnO, MgO and Na2O were depleted. Conclusions: The findings suggest that Ogun State may be described as a region with elevated background radiation. It is recommended that houses should be constructed with good cross ventilation and residences should use home radiation monitoring instruments to monitor radon emanating from walls.

Establishment of Integrated Health Evaluation Criteria for Coastal Aquaculture System (살포식 패류 양식어장 건강도 평가기준 설정)

  • Young-Shin Go;Dong-Hun Lee;Young-Jae Lee;Won-Chan Lee;Un-Ki Hwang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.4
    • /
    • pp.462-472
    • /
    • 2023
  • We investigated the physio-chemical and geochemical parameters in the spraying shellfish aquacultures (Yeoja and Gangjin Bay) to establish the systematic strategy for effective environmental management. Spatial variation of each parameter showed partially significant difference (P<0.05) between Yeoja and Ganjin Bay, inferring the discriminative progress (i.e., accumulation and degradation) of the autochthonous organic matter within the aquaculture environments. We additionally integrated various properties (e.g., water/sediment quality, natural hazard, and biological health) which may affect the biological growth within the aquaculture habitats based on the biogeochemical cycles related to environmental components and aquaculture species. We used a screening approach (i.e., one out-all out; OOAO) which can permit the assessment of the health levels of aquaculture species, the scoring for other parameters (seawater, sediment, and natural hazard) as three levels (excellent, moderate and poor) depending on the complex interactive properties occurring in the aquaculture environments. Actual, discriminative scores obtained via our case studies may confirm that these stepwise processes are effectively evaluated for optimal health conditions within the aquaculture habitats. Thus, this approach may provide valuable insights for effective environmental management and sustainable growth of aquaculture operation.

Geochemical evolution of mine tailing porewaters and groundwater pollution - Case for Shiheung mine (광미 자연풍화에 따른 광미공극수의 지구화학적 진화와 지하수 오염영향 - 시흥광산의 사례)

  • 정예진;이상훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.19-21
    • /
    • 2001
  • The Shiheung mine was closed in 1972 and has been abandoned since then. Although some restoration work has been done, there still remain mine failings in and around the mine, posing a potential environmental hazard. Mine tailings and the porewater extracted from the tailing were investigated to see any evidence of elemental release and migration to adjacent groundwater and soil in the field. The pHs of the tailing range from 6.24 to 7.23. Calcite in the studied area seems to influence on such neutral pH range. Depth profile of mine tailing demonstrate elements have been leached and removed as a consequence of weathering during disposal. This is also supported by the findings from porewater analysis, corresponding the trends in the mine tailings. The concentrations of Cu, Cd, Pb, Zn in the tailing porewater exceed the standard value of EPA for drinking water and this implies groundwater can be contaminated through infiltration of the porewaters, which ultimately will be discharged as leachate from the mine tailing. Groundwater samples collected near the mine area do not show high metal concentrations, except for Fe, which were detected over drinking water standard.

  • PDF

Exposure and human risk assessment of toxic heavy metals on abandoned metal mine areas

  • Lee Jin-Soo;Chon Hyo-Taek
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.515-517
    • /
    • 2003
  • In order to assess the risk of adverse health effects on human exposure to arsenic and heavy metals influenced by past mining activities, environmental geochemical surveys were undertaken in the abandoned metal mine areas (Dongil Au-Ag-Cu-Zn, Okdong Cu-Pb-Zn, Songcheon Au-Ag, Dongjung Au-Ag-Pb-Zn, Dokok Au-Ag-Cu and Hwacheon Au-Ag-Pb-Zn mines). Arsenic and other heavy metals were highly elevated in the tailings from the Dongil, the Songcheon and the Dongjung mines. High concentrations of heavy metals except As were also found in tailings from the Okdong, the Dokok and the Hwacheon mines. These significant concentrations can impact on soils and waters around the tailing dumps. Risk compounds deriving from mine sites either constitute a toxic risk or a carcinogenic risk. The hazard index (H.I.) of As in the Dongil, the Okdong, the Songcheon and the Hwacheon mine areas was higher value more than 1.0. In the Okdong and the Songcheon mine areas, H.I. value of Cd exceeded 1.0. These values of As and Cd were the highest in the Songcheon mine area. Therefore, toxic risks for As and Cd exist via exposure (ingestion) of contaminated soil, groundwater and rice grain in these mine areas. The cancer risk for As in stream or ground water used for drinking water from the Songcheon, the Dongil, the Okdong, the Dongjung and the Hwacheon mine areas was 3E-3, 8E-4, 7E-4, 2E-4 and 1E-4, respectively.

  • PDF

Evaluation of the Safty for the Disposal of High-level Nuclear Waste in the Granite (화강암지역에 고준위 원자력 폐기물 처리에 대한 안정성 평가)

  • Oh, Chang Whan
    • Economic and Environmental Geology
    • /
    • v.29 no.2
    • /
    • pp.215-225
    • /
    • 1996
  • All the radionuclides in high-level nuclear waste will decay to harmless levels eventually but for some radionuclides decay is so slow that their radiation remains dangerous for times on the order of tens or hundreds of thousands of years. At the present time, the most favorite disposal plan for high-level radioactive waste is a mined geological disposal in which canister enclosing stable solid form of radioactive waste is placed in mined cavities locating hundred meters below the surface. The chief hazard in such disposal is dissolution of radionuclides from the waste in the groundwater that will eventually carry the dissolved radionuclides to surface environments. The hazard from possible escape of the radionuclides through groundwater can be delayed by engineered and geologic barriers. The engineered barriers can become useless by unexpected geologic catastrophe such as volcanism, earthquake, and tectonic movement and by fraudulent work such as careless construction, improperly welded canisters within the first few decades or centuries. As a result, dangerously radioactive waste which is still intensively radioactive is directly exposed to attack by moving groundwater. All the more, it is almost impossible to control repositories for times more than 10,000 years. Therefore, naturally controlled geologic, barriers whose properties will not be changed within 10,000 years are important to guarantee the safety of repositories of high-level radioactive waste. In Sweden and France, the suitability of granite for the mined geological disposal of high-level waste has been studied intensively. According to the research in Sweden and France, granites has the following physio-chemical characteristics which can delay the transportation of radionuclide by groundwater. First, the permeabilities of granites decreases as the depth increases and is $10^{-8}{\sim}10^{-12}m/s$ at depth below 300 m. Second, groundwater at depth below 300 m has pH=7-9 and reducing condition (Eh=-0.1~0.4). This geochemical condition is desirable to prevent both canister and solid waste from corrosion. Third most radionuclides are not transported by low solubilities and some radionuclide with high solubility such as Cs and Sr are retarded by absorption of geologic media through which ground water flows. Therefore, if high-level waste is disposed at depth below 300 m in the granite body which has a low permeability and is geologically stable more than 10,000 years, the safety of repositories from the hazard due to radionuclide escape can guaranteed for more than 10,000 years.

  • PDF

Geochemistry and Sm-Nd isotope systematics of Precambrian granitic gneiss and amphibolite core at the Muju area, middle Yeongnam Massif (영남육괴 중부 무주 지역에 위치하는 선캠브리아기 화강편마암 및 앰피볼라이트 시추코아의 Sm-Nd 연대 및 지구화학적 특징)

  • Lee Seung-Gu;Kim Yongje;Kim Kun-Han
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.3 s.41
    • /
    • pp.127-140
    • /
    • 2005
  • The Samyuri area of Jeoksang-myeon, Muju-gun at the Middle Yeongnam Massif consists of granitic gneiss, porphyroblastic gneiss and leucocratic gneiss, which correspond to Precambrian Wonnam Series. Here we discuss a geochemical implication of the data based on major element composition, trace element, rare earth element (REE), Sm-Nd and Rb-Sr isotope systematics of the boring cores in the granite gneiss area. The boring cores are granitic gneiss (including biotite gneiss) and amphibolite. The major and trace element compositions of granitic gneiss and amphibolite suggest that the protolith belongs to TTG (Tonalite-Trondhjemite-Granodiorite) and tholeiitic series, respectively. Chondrte-normalized REE patterns vary in LREE, HREE and Eu anomalies. The granitic gneiss and amphibolite have Sm-Nd whole rock age of $2,026{\pm}230(2{\sigma})$ Ma with an initial Nd isotopic ratio of $0.50979{\pm}0.00028(2{\sigma})$ (initial ${\epsilon}_{Nd}=-4.4$), which suggests that the source material was derived from old crustal material. Particularly, this initial ${\epsilon}$ Nd value belongs to the range of the geochemical evolution of Archean basement in North-China Craton, and also corresponds to the initial Nd isotope evolution line by Lee et al. (2005). In addition, chondrite-normalized REE pattern and initial Nd value of amphibolite are very similar to those of juvenile magma in crustal formation process.