• Title/Summary/Keyword: geochemical analysis

Search Result 301, Processing Time 0.023 seconds

Multivariate Analysis of the Geochemical Data of Tin-bearing Granitoids in the Sangdong and the Ulchin Areas, Korea (상동 및 울진지역 주석 화강암질암의 지구화학 자료에 대한 다변량해석)

  • Chon, Hyo-Taek;Cheong, Young-Wook;Son, Chang-Il
    • Economic and Environmental Geology
    • /
    • v.27 no.3
    • /
    • pp.237-246
    • /
    • 1994
  • Tin mineralizations in South Korea have been found only in the Ulchin and Sangdong areas. They appear to be in close spatial association with the Wangpiri granitoid in the UlChin area, and the Nonggeori and Naedeogri granites in the Sangdong area. However, previous works have revealed that there are considerable differences in geological setting, mineralogical and geochemical compositions among these granitoids concerned. The roles of discriminant and multiple regression analysis have been examed to establish geochemical differences among the tin-granitoids and to identify elements relating to tin mineralizations. The data set used in this study consists of 60 observations with 29 elements which are cited from pre-existing publications. A stepwise discriminant analysis determined the group of variables that differentiate between samples from four training sets; Buncheon, Wangpiri, Nonggeori and Naedeogri granitoids. These granitoids were most effectively discriminated on the basis of major elements FeO, CaO and $P_2O_5$ and also by the trace elements Rb and Zr. Results of the multiple regression analysis shows that the level of Sn in granitoids depends positively on ones of MnO, Rb and FeO and negatively $P_2O_5$. Graphical representation of discriminant scores on sampling locations greatly aid recognition of differences in the geochemical characteristics in terms of spatial distribution of granitoids examed. The application of the discriminant analysis provides a potential means of identifying and comparing geochemical characteristics.

  • PDF

Soil Geochemical Exploration of the Mt. Subang Area of the Southern Part of the Bandung, Indonesia (인도네시아 반둥 남부 수방산지역에서의 토양지화학 탐사)

  • 김인준;이재호;이사로;서정률;김유봉;이규호
    • Economic and Environmental Geology
    • /
    • v.37 no.2
    • /
    • pp.173-184
    • /
    • 2004
  • The geochemical exploration was carried out of the soil systems in the survey areas(Mt. Subang area). The chemical values of soil samples for soil in this area are defined such as over values of Ag : 11 ppm(Average : 1.91 ppm), Au 548 ppb(Average 42.39 ppb), Cu : 89 ppm(Average:51.40 ppm), Pb:190 ppm(Average : 23.69 ppm), Zn : 157 ppm(Average : 61.78 ppm), respectively. Anomalous areas for each element have been chosen based on the factors such as, geologic settings, geochemical survey, chemical analysis of ore, chemical analysis of soil. statistical processing of the chemical analysis. Therefore, multi-elements anomalies area were recognized in the east-center part of the study area.

A Study on the Developement of Soil Geochemical Exploration Method for Metal Ore Deposits Affected by Agricultural Activity (농경작업 영향지역의 금속광상에 대한 토양 지구화학 탐사법 개발 연구)

  • Kim, Oak-Bae;Lee, Moo-Sung
    • Economic and Environmental Geology
    • /
    • v.25 no.2
    • /
    • pp.145-151
    • /
    • 1992
  • In order to study the optimum depth for the soil geochemical exploration in the area which is affected by agricultural activities and waste disposal of metal mine, the soil samples were sampled from the B layer of residual soil and vertical 7 layers up to 250 cm in the rice field and 3 layers up to 90 cm in the ordinary field. They were analyzed for Au, As, Cu, Pb and Zn by AAS, AAS-graphite furnace and ICP. To investigate the proper depth for the soil sampling in the contaminated area, the data were treated statistically by applying correlation coefficient, factor analysis and trend analysis. It is conclude that soil geochemical exploration method could be applied in the farm-land and a little contaminated area. The optimum depth of soil sampling is 60 cm in the ordinary field, and 150~200 cm in the rice field. Soil sampling in the area of a huge mine waste disposal is not recommendable. Plotting of geochemical map with factor scores as a input data shows a clear pattern compared with the map of indicater element such as As or Au. The second or third degree trend surface analysis is effective in inferring the continuity of vein in the area where the outcrop is invisible.

  • PDF

The Methodology for Extraction of Geochemical Anomalies, Using Regression Formula: an Example from a Granitic Body in Gyeonggi Province (회귀 수식을 이용한 지구화학적 이상분포지역 도출기법: 경기도화강암의 예)

  • 황상기;신성천;염승준;문상원
    • Economic and Environmental Geology
    • /
    • v.35 no.2
    • /
    • pp.137-147
    • /
    • 2002
  • Natural geological and environmental processes reflect to element abundances in geological materials on the surface. This study aims to elucidate a possibility of geostatistical application to differentiate geochemical anomalies affected by anthropogenic and geogenic factors. A regional geochemical map was produced using 'inverse distance weight interpolation' method for analytical results of stream sediments «150 11m) which were collected from 2,290 first- to second-order streams over the whole Gyeonggi Province. The Jurassic granitic batholith in the southeastern province was selected as a target for the geostatistical examination. Factor analysis was conducted using 22 elements for stream sediments from 445 drainage basins over the granitic body. Co, Cr, Sc, MgO, Fe$_{2}$O$_{3}$, V, and Ni were grouped with high correlation coefficients and the depletion of the components may reflect the whole-rock chemistry of the granite. Regression analysis was done using Co, Cr, and Sc as dependent variables and other six components as independent variables, and the results were drawn as maps. The maps acquired generally show quite similar distribution patterns with those of concentrations of each variable. The similarity in the spatial patterns between the two maps indicates that the application of regression statistics can be valid for the interpretation of regional geochemical data. However, some components show local discrepancies which may be influenced by secondary factors regardless of the basement lithology. The regression analysis may be effective in extracting local geochemical anomalies which may reflect rather anthropogenic pollutions than geogenic influences.

Fusion of 3D seismic exploration and seafloor geochemical survey for methane hydrate exploration (메탄 하이드레이트 탐사를 위한 3 차원 탄성파 탐사와 해저면 지구화학탐사의 융합 기술)

  • Nagakubo, Sadao;Kobayashi, Toshiaki;Fujii, Tetsuya;Inamori, Takao
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.37-43
    • /
    • 2007
  • The MH21 Research Consortium has conducted a high-resolution 3D seismic survey and a seafloor geochemical survey, to explore methane hydrate reservoirs in the eastern Nankai Trough, offshore Japan. Excellent geological information about shallow formations was obtained from the high-resolution 3D seismic survey, which was designed to image the shallow formations where methane hydrates exist. The information is useful in constructing a geological and geochemical model, and especially to understand the complex geology of seafloor, including geochemical manifestations and the structure of migration conduits for methane gas or methane-bearing fluid. By comparing methane seep sites observed by submersibles with seismic sections, some significant relationships between methane hydrate reservoirs, free gas accumulations below the seafloor, and seafloor manifestations are recognised. Bathymetric charts and seafloor reflection amplitude maps, constructed from seismic reflections from the seafloor, are also useful in understanding the relationships over a vast area. A new geochemical seafloor survey targeted by these maps is required. The relationships between methane hydrate reservoirs and seafloor manifestations are becoming clearer from interpretation of high-resolution 3D seismic data. The MH21 Research Consortium will continue to conduct seafloor geochemical surveys based on the geological and geochemical model constructed from high-resolution 3D seismic data analysis. In this paper, we introduce a basis for exploration of methane hydrate reservoirs in Japan by fusion of 3D seismic exploration and seafloor geochemical surveys.

Application of Indicator Geostatistics for Probabilistic Uncertainty and Risk Analyses of Geochemical Data (지화학 자료의 확률론적 불확실성 및 위험성 분석을 위한 지시자 지구통계학의 응용)

  • Park, No-Wook
    • Journal of the Korean earth science society
    • /
    • v.31 no.4
    • /
    • pp.301-312
    • /
    • 2010
  • Geochemical data have been regarded as one of the important environmental variables in the environmental management. Since they are often sampled at sparse locations, it is important not only to predict attribute values at unsampled locations, but also to assess the uncertainty attached to the prediction for further analysis. The main objective of this paper is to exemplify how indicator geostatistics can be effectively applied to geochemical data processing for providing decision-supporting information as well as spatial distribution of the geochemical data. A whole geostatistical analysis framework, which includes probabilistic uncertainty modeling, classification and risk analysis, was illustrated through a case study of cadmium mapping. A conditional cumulative distribution function (ccdf) was first modeled by indicator kriging, and then e-type estimates and conditional variance were computed for spatial distribution of cadmium and quantitative uncertainty measures, respectively. Two different classification criteria such as a probability thresholding and an attribute thresholding were applied to delineate contaminated and safe areas. Finally, additional sampling locations were extracted from the coefficient of variation that accounts for both the conditional variance and the difference between attribute values and thresholding values. It is suggested that the indicator geostatistical framework illustrated in this study be a useful tool for analyzing any environmental variables including geochemical data for decision-making in the presence of uncertainty.

Mineralogical Chemistry of Granitoids and Pegmatites in the Sangdong and the UIchin Areas (상동 및 울진지역 화강암질암과 페그마타이트의 광물화학)

  • Chon, Hyo-Taek;Son, Chang-Il
    • Economic and Environmental Geology
    • /
    • v.28 no.1
    • /
    • pp.33-41
    • /
    • 1995
  • Tin mineralizations in South Korea have been found only in the Ulchin and the Sangdong areas. The Wangpiri and the Yuchang Sn pegmatites appear to be in close spatial and genetical relation to the Wangpiri granitoid in the Ulchin area, and the Soonkyeong Sn pegmatite be in close association with the Nonggeori granites in the Sangdong area from geochemical viewpoint. The electron-microprobe analysis of muscovite, biotite, tourmaline and cassiterite from the granitoids and pegmatites in the Ulchin and the Sangdong areas has revealed a distinct differences of geochemical compositions. The Wangpiri and the Yuchang Sn pegmatites show an enrichment of MnO and a depletion of $TiO_2$, FeO and MgO in comparison with the Soonkyeong Sn pegmatite. This result coincides with the geochemical compositions of granitoid rocks in these areas. Enrichment of MnO and depletion of $TiO_2$ FeO and MgO are characteristic in muscovite, biotite and tourmaline of pegmatites compared with those of granitoids. These geochemical differences of muscovite, biotite and tourmaline between granitoids and pegmatites in these areas implies that pegmatites are more fractionated than granitoids.

  • PDF

Geochemical Behavior and Pollution of Soils in Gwangju City (광주광역시 토양의 지화학적 거동 특성과 오염)

  • Shin, Sang-Eun;Kim, Joo-Yong;Oh, Kang-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.6
    • /
    • pp.415-425
    • /
    • 2005
  • To examine the geochemical behavior and pollution of soils in Gwangju City, an analysis was carried out for pH, on the contents of metals, and organic carbon. Soil samples were taken from environs areas, industrial areas and downtown areas. The major factor controlling the behavior of metallic elements in the soil was chemical weathering of clay mineral in the environs areas, industrialization, and urbanization. Heavy metals including Cu, Pb and Zn were highly enriched for the samples from central part of downtown area. This indicated that the urbanization and the industrialization affected soil pollution. The results show that soil pollution in a metropolitan city which is caused by harmful heavy metals is severest in the center of the city. In consequence, it is inevitable that practical measures should be taken to prevent soil pollution expansion.

Evaluation of Interactions Between Surface Water and Groundwater Based on Temperature, Flow Properties, and Geochemical Data (온도, 유동특성 및 지화학분석 자료를 이용한 지표수-지하수 연계특성 평가)

  • Jeon, Hang-Tak;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.21 no.1
    • /
    • pp.45-55
    • /
    • 2011
  • We examined the interactions between surface and groundwater through (1) flowmeter logging, (2) measurements of seasonal and vertical changes in temperature within a well, and (3) geochemical analyses of water samples from nine groundwater-monitoring wells. At two wells adjacent to a stream, subsurface water was found to flow from the stream to a surrounding alluvial fan, and the seasonal change in groundwater temperature is similar to those of surface water and air. Geochemical analyses at two wells indicated hydro-geochemical features affected by streamwater inflow, showing seasonal variations. Accordingly, these two wells are located in an area with active interaction between surface water and groundwater. The Thermochron I-button used in the present study is useful for this type of study of groundwater?surface water interaction because of its low cost and small size.

Geochemical Approaches for Investigation and Assessment of Heavy Metal Contamination in Abandoned Mine Sites (폐광산지역의 오염특성 조사와 평가를 위한 지구화학적 접근방법)

  • 이평구;조호영;염승준
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.35-48
    • /
    • 2004
  • This paper provides a comprehensive overview of geochemical approaches for investigating and assessing heavy metal contamination in abandoned mine sites. Major sources of contaminants at the abandoned mine sites are mine water, waste rocks, tailings, and chemicals used in beneficiation and mineral processing. Soil, sediment, surface and ground water, and ecological system can be contaminated by heavy metals, which are transported due to erosion of mine waste piles, discharge of acid mine drainage and processed water, and dispersion of dust from waste rocks and tailings. The abandoned mine sites should be characterized using various methods including chemical analysis, mineralogical analysis, acid generation prediction tests, leaching/extraction tests, and field tests. Potential and practical environmental impacts from the abandoned mines should be assessed based on the site characterization.