• Title/Summary/Keyword: geo-material

Search Result 337, Processing Time 0.028 seconds

Strength and Deformation Characteristic of Two-Phase Mixture Soil (폐기물을 포함한 이종혼합토의 강도·변형특성)

  • Lee, Ki-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.2
    • /
    • pp.33-39
    • /
    • 2001
  • In order to utilize mass of oyster shells for a partial substitute material for reclamation, the shear characteristics of two-phase mixture soil with oyster shells were investigated with $\overline{CU}$ test. From various experiments, it was found that the increase of mixed ratio of oyster shells causes the shear strength of mixed soil. And this phenomenon not only depends on friction due to confining pressure such as pure clay but also is influenced by shaping skeleton of oyster shells. Also, it was discovered that there were many influences by clay-oyster shell mixture from the study of the secant modulus and dilatancy characteristics of mixed soil. In addition, variation of oyster shell skeleton during shearing stage is examined applying modifying coefficient concept.

  • PDF

The Research of Velocity Estimation Method in Pipe Pumping for Slurry Transportation (슬러리 이송을 위한 관내 유속 추정 방법 연구)

  • Kwon, Seunghee;Jeong, Soonyong;Kim, Yuseung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.3
    • /
    • pp.21-32
    • /
    • 2014
  • This Research have suggested the new estimation method using parameter estimation algorithm to substitute established velocity and friction factor calculation equation. Established calculation equation has some difficulties for estimation and reflecting exactly flow specification cause parameter uncertainty and material uncertainty governed real phenomenon, so this research has used system modeling method for flow specification estimation and suggested estimation method.

3D traveltime calculation considering seismic velocity anisotropy (탄성파 속도 이방성을 고려한 3차원 주시 모델링)

  • Jeong, Chang-Ho;Suh, Jung-Hee
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.203-208
    • /
    • 2007
  • Due to the long tectonic history and the very complex geologic formations in Korea, the anisotropic characteristics of subsurface material may often change very greatly and locally. The algorithms for the travel time computation commonly used, however, may not give sufficiently precise results particularly for the complex and strong anisotropic model, since they are based on the two-dimensional (2D) earth and/or weak anisotropy assumptions. This study is intended to develope a three-dimensional (3D) modeling algorithm to precisely calculate the first arrival time in the complex anisotropic media. We assume 3D TTI (tilted transversely isotropy) medium having the arbitrary symmetry axis. The algorithm includes the 2D non-linear interpolation scheme to calculate the traveltimes inside the grid and the 3D traveltime mapping to fill the 3D model with first arrival times. The weak anisotropy assumption, moreover, can be overcome through devising a numerical approach of the steepest descent method in the calculation of minimum traveltime, instead of using approximate solution.

  • PDF

A Study on the Effect of Improvement Boundary of Vertical Drain Method by Finite Element Analysis (유한요소해석을 이용한 연직배수재의 타설범위에 따른 개량효과에 관한 연구)

  • Chang, Y.C.;Kim, J.H.;Lee, J.S.
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.1
    • /
    • pp.5-12
    • /
    • 2004
  • Soft foundation is extensively distributed in coastal areas including our local regions. Embankment load on such soft foundation causes displacement due to lack of base ground supports. Long-term consolidation can result in settlement and destruction of shear failure and structure. Therefore, a variety of vertical drain methods are applied to construction sites to prevent base from breaking and changing for secure construction. This study analyzed the patterns of changes displacement to determine efficient range of improvement since range of vertical drain material determines vertical and horizontal changes based on the width range of under ground improvement. Changes of intensity with distance from embankment edge were also analyzed in the field study of embankment slope.

  • PDF

A Study on the Effectiveness of the Mortar Jet Method in Increasing the Strength of the Soft Ground (시멘트 몰탈형 고압분사공법(MJM)에 의한 연약지반 보강효과에 관한 연구)

  • Chun, Byung-Sik;Baek, Ki-Hyun;Jooi, Tae-Seong;Do, Jong-Nam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.4
    • /
    • pp.59-64
    • /
    • 2005
  • Although high pressure discharge method is widely used for improving soft ground, it has various problems including lack of strength increase and the possibility of water pollution and soil contamination. MJM(Morta Jet Method) uses sand in addition to cement as the injection material. MJM uses triple rods with a built-in nozzle that allows easier discharge of the slime, resulting in higher replacement area ratio and more uniform formation of pillar hydrates, and thus results in significant increase in strength. MJM is expected to perform especially well as piles in marine clays. This study investigates the field applicability of the MJM through extensive laboratory and field tests.

  • PDF

Grouting Effects of Microfine Cement in the Rock-based Sites (시멘트계 주입재료의 암반그라우팅 효과)

  • Kong, Jinyoung;Kim, Chanki;Park, Jinhwan;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.12
    • /
    • pp.37-45
    • /
    • 2010
  • The particle size of microfine cement(MC) is so small that it can be injected into silt layer. But the more particle size is miniaturized, the more the cohesion increases. This phenomenon results in the decrease of the perviousness of MC. In this study, the grouting effects of microfine cement with superplasticizer to maintain cohesion low and that of normal cement were investigated in rock. To estimate the grouting effects, TCR/RQD test for rock quality, lugeon test, borehole loading test for coefficients of elastic and deformative stress, borehole shear test for shear stress, detection p~q~t(pressure~flow~time) chart tests were carried out. The results using MC show a better permeability, modulus of elasticity, deformation, charge per unit, and recover efficiency of grouting material than those of ordinary portland cement except shear stress.

A Study on Rainfall Induced Slope Failures: Implications for Various Steep Slope Inclinations

  • Do, Xuan Khanh;Jung, Kwansue;Lee, Giha;Regmi, Ram Krishna
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.5
    • /
    • pp.5-16
    • /
    • 2016
  • A rainfall induced slope failure is a common natural hazard in mountainous areas worldwide. Sudden and rapid failures which have a high possibility of occurrence in a steep slope are always the most dangerous due to their suddenness and high velocities. Based on a series of experiments this study aimed to determine a critical angle which could be considered as an approximate threshold for a sudden failure. The experiments were performed using 0.42 mm mean grain size sand in a 200 cm long, 60 cm wide and 50 cm deep rectangular flume. A numerical model was created by integrating a 2D seepage flow model and a 2D slope stability analysis model to predict the failure surface and the time of occurrence. The results showed that, the failure mode for the entire material will be sudden for slopes greater than $67^{\circ}$; in contrast the failure mode becomes retrogressive. There is no clear link between the degree of saturation and the mode of failure. The simulation results in considering matric suction showed good matching with the results obtained from experiment. A subsequent discarding of the matric suction effect in calculating safety factors will result in a deeper predicted failure surface and an incorrect predicted time of occurrence.

A Case Study about Problem EPS Plastic Displacement on High Embankment (고성토 지반의 EPS 소성변형 문제점에 대한 사례연구)

  • Shin, Chang Gun;Seo, Jeong You;Lee, Jong keyn;Chae, Min Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.5-12
    • /
    • 2011
  • Numerous studies on the improvement of low strength for soft ground have been performed. EPS, light weight filling material, is used at the study site for stability on consolidation settlement. However, several problems such as settlement of pavement layer and damage of curb occurs. The elevation is lower 1 m than that of designed value by consolidation. It is caused by excessive load during construction. In this study, problems due to overloading on the soft ground where the EPS is used were analyzed and some cases for reasonable improvement method were described. From the results, instructions for design and construction are suggested.

Verification of Applicability of Hybrid CFFT Pile for Numerical Analysis (수치해석을 통한 FRP 콘크리트 합성말뚝 적용성 평가)

  • Kim, HongTaek;Lee, MyungJae;Park, JeeWoong;Yoon, SoonJong;Han, YeonJin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.8
    • /
    • pp.59-67
    • /
    • 2011
  • The interaction of the ground deformation and composite piles, which is made of fiber glass, was analyzed for the effective pile application under vertical loads. This study was performed to conduct experimentation test and propose the material characteristics of the new type concrete injection circular FRP pile for the improvement of the defect of CFFT-Concrete composition piles and FRP-Concrete composition piles(FRP reinforced column direction). Additionally, in order to analyze the behaviour characteristics of composite pile and steel pile the numerical analyses were carried out.

Failure pattern of twin strip footings on geo-reinforced sand: Experimental and numerical study

  • Mahmoud Ghazavi;Marzieh Norouzi;Pezhman Fazeli Dehkordi
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.653-671
    • /
    • 2023
  • In practice, the interference influence caused by adjacent footings of structures on geo-reinforced loose soil has a considerable impact on their behavior. Thus, the goal of this study is to evaluate the behavior of two strip footings in close proximity on both geocell and geogrid reinforced soil with different reinforcement layers. Geocell was made from geogrid material used to compare the performance of cellular and planar reinforcement on the bearing pressure of twin footings. Extensive experimental tests have been performed to attain the optimum embedment depth and vertical distance between reinforcement layers. Particle image velocimetry (PIV) analysis has been conducted to monitor the deformation, tilting and movement of soil particles beneath and between twin footings. Results of tests and PIV technique were verified using finite element modeling (FEM) and the results of both PIV and FEM were used to utilize failure mechanisms and influenced shear strain around the loading region. The results show that the performance of twin footings on geocell-reinforced sand at allowable and ultimate settlement ranges are almost 4% and 25% greater than the same twin footings on the same geogrid-reinforced sand, respectively. By increasing the distance between twin footings, soil particle displacements become smaller than the settlement of the foundations.