• 제목/요약/키워드: geo-field

검색결과 567건 처리시간 0.032초

정보화 시공분야에서의 Geo-mechatronics 기술의 전망 (Introduction of Geo-Mechatronics in Construction IT)

  • 김영석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1289-1293
    • /
    • 2009
  • For the purpose of automatic management and enhancing quality of construction, information technology has been employed in construction field recently. As a consequence, informative construction, which utilizes information technology to reduce construction time and optimize construction sequence, becomes a state-of-art field of construction. Considering this case, construction field should more actively adopt other engineering technologies of rapidly advancing fields, such as electronic, control, and informative engineering, in order to reduce construction cost and to solve environmental problems as well as to enhance construction quality. In this aspect, this paper introduces a novel research field 'Geo-mechatronics', which stands for the convergence of geotechnical engineering and mechatronics (i.e. automation of mechanics using electronic technologies). Since the ground is ubiquitous in every infrastructure construction, the Geo-mechatronics research is crucial for the development of construction technology in the future. Moreover, it is believed to that the Geo-mechatronics research will make our construction industry to be more future-oriented and internationally comparative industry.

  • PDF

수도작 포장의 고저차 측정을 위한 최적 받침대 선정 (Selection of Optimum Fulcrum Type for Measurement and Geo-statistical Analyze of Elevation within Rice Paddy Field)

  • 성제훈;장순우
    • Journal of Biosystems Engineering
    • /
    • 제30권5호
    • /
    • pp.268-273
    • /
    • 2005
  • This study was conducted to investigate the specificities of four fulcrum types for geo-statistical analysis of elevation within rice paddy field. In Korea, the spaces between inter-rows and between hills for rice transplanting are 30cm and 11cm to 14cm, respectively. So, the size and shape of fulcrum for field elevation measurement should be considered according to the inter-row and the hill spaces. Four kinds of fulcrum were chosen such as round-shape with 2.5cm diameter, circular-shape with 10cm diameter, 10cm (one third of inter-row space) by 24cm (double of hill space) rectangular-shape, and 20cm (two-thirds of inter-row space) by 24cm rectangular-shape. The resulting descriptive statistics couldn't determine the best fulcrum type to measure the rice paddy field elevation. But the results of geo-statistical analysis could determine the best fulcrum type. In the case of 10cm by 24cm rectangular-shape fulcrum, Nugget and range, meaning measurement error and/or noise, and limit of spatial connection, respectively, were minimum; Q value meaning weight of spatial structure and $r^2$ value were minimum, and residual sum of squares was minimum. It means that 10cm by 24 cm rectangular-shape fulcrum could best describe the rice paddy field elevation.

Determination of Geostationary Orbits (GEO) Satellite Orbits Using Optical Wide-Field Patrol Network (OWL-Net) Data

  • Shin, Bumjoon;Lee, Eunji;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제36권3호
    • /
    • pp.169-180
    • /
    • 2019
  • In this study, a batch least square estimator that utilizes optical observation data is developed and utilized to determine geostationary orbits (GEO). Through numerical simulations, the effects of error sources, such as clock errors, measurement noise, and the a priori state error, are analyzed. The actual optical tracking data of a GEO satellite, the Communication, Ocean and Meteorological Satellite (COMS), provided by the optical wide-field patrol network (OWL-Net) is used with the developed batch filter for orbit determination. The accuracy of the determined orbit is evaluated by comparison with two-line elements (TLE) and confirmed as proper for the continuous monitoring of GEO objects. Also, the measurement residuals are converged to several arcseconds, corresponding to the OWL-Net performance. Based on these analyses, it is verified that the independent operation of electro-optic space surveillance systems is possible, and the ephemerides of space objects can be obtained.

지하공간건설정보모델링(GeoBIM) 기반의 디지털 트윈 구축사례에 관한 연구 - 제주도 재암천굴, 정구수굴 사례를 중심으로 - (A case study of digital twin construction based on geospatial building information modeling (GeoBIM) - Focusing on the case of Jaeamcheon-gul and Jeonggusu-gul in Jeju Island -)

  • 이종현;안준상;최재웅;백용
    • 한국BIM학회 논문집
    • /
    • 제11권4호
    • /
    • pp.20-30
    • /
    • 2021
  • In the era of the 4th industrial revolution, smart construction is actively researched, in the domestic construction field, and one of the key elements in this field is Building Information Modeling(BIM). In Korea, smart construction is being implemented through BIM-based digitization and intelligence. The geotechnical engineering field should also prepare for the introduction of BIM. In this study, the concept and application status of GeoBIM were identified, and the direction of future research was presented. This study is a part of the study "Establishment of GeoBIM-based Digital Twin Maintenance System" in the current "Technology Development for Establishment of Jeju Ground Collapse Response System for Safe Road Operation". The subject and scope of the study is continuous excavation at caves located under roads in Jeju Island, and initial research is being conducted on Jaeamcheon-gul and Jeonggusu-gul. This study aims to build a digital twin through individual data construction and integration processes such as cave shape modeling using laser scanners, 3D stratum modeling using borehole information and geophysical exploration data, and modeling of surrounding conditions using drones.

위성영상별 경지면적 분류 정확도 비교 분석 (Comparative Analysis of Classification Accuracy for Calculating Cropland Areas by using Satellite Images)

  • 조명희;김성재;김동영;최경숙
    • 한국농공학회논문집
    • /
    • 제54권2호
    • /
    • pp.47-53
    • /
    • 2012
  • Recently many developed countries have used satellite images for classifying cropland areas to reduce time and efforts put into field survey. Korea also has used satellite images for the same purpose since KOMPSAT-2 was successfully launched and operated in 2006, but still far way to go in order to achieve the required accuracy from the products. This study evaluated the accuracy of the calculated croplands by using the objected classification method with various satellite images including ASTER, Spot-5, Rapid eye, Quickbird-2, Geo eye-1. Also, their usability and effectiveness for the cropland survey were verified by comparing with field survey data. As results. Geo eye-1 and Rapid eye showed higher accuracy to calculate the paddy field areas while Geo eye-1 and Quickbird-2 showed higher accuracy to calculate the upland field areas.

Application of GeoWEPP to determine the annual average sediment yield of erosion control dams in Korea

  • Rhee, Hakjun;Seo, Junpyo
    • 농업과학연구
    • /
    • 제47권4호
    • /
    • pp.803-814
    • /
    • 2020
  • Managing erosion control dams requires the annual average sediment yield to determine their storage capacity and time to full sediment-fill and dredging. The GeoWEPP (Geo-spatial interface for Water Erosion Prediction Project) model can predict the annual average sediment yield from various land uses and vegetation covers at a watershed scale. This study assessed the GeoWEPP to determine the annual average sediment yield for managing erosion control dams by applying it to five erosion control dams and comparing the results with field observations using ground-based LiDAR (light detection and ranging). The modeling results showed some differences with the observed sediment yields. Therefore, GeoWEPP is not recommended to determine the annual average sediment yield for erosion control dams. Moreover, when using the GeoWEPP, the following is recommended :1) use the US WEPP climate files with similar latitude, elevation and precipitation modified with monthly average climate data in Korea and 2) use soil files based on forest soil maps in Korea. These methods resulted in GeoWEPP predictions and field observations of 0 and 63.3 Mg·yr-1 for the Gangneung, 142.3 and 331.2 Mg·yr-1 for the Bonghwa landslide, 102.0 and 107.8 Mg·yr-1 for the Bonghwa control, 294.7 and 115.0 Mg·yr-1 for the Chilgok forest fire, and 0 and 15.0 Mg·yr-1 for the Chilgok control watersheds. Application of the GeoWEPP in Korea requires 1) building a climate database fit for the WEPP using the meteorological data from Korea and 2) performing further studies on soil and streamside erosion to determine accurate parameter values for Korea.

Point Cloud 기반의 고해상도 원시데이터 연계 및 관리시스템 개발 (Development of Linking & Management System for High-Resolution Raw Geo-spatial Data based on the Point Cloud DB)

  • 김재학;이동하
    • 한국지리정보학회지
    • /
    • 제21권4호
    • /
    • pp.132-144
    • /
    • 2018
  • 건설, 의료, 컴퓨터 그래픽스, 도시공간 관리 등 다양한 분야에서 3차원 공간정보 모델이 이용되고 있다. 특히 측량 및 공간정보 분야에서는 최근 고품질의 3차원 공간정보와 실내공간정보에 대한 수요가 폭발적으로 증가하고 있으나, 현재 공간정보 데이터가 다양한 형식과 저장구조로 구성되어 관리되고 있어 저비용 고효율의 3차원 공간정보 서비스가 어려운 상황이다. 실제로 활용도 높은 3차원 모델을 구축하기 위한 기술은 관측과 처리에 고액의 비용이 발생하지만, 대부분의 수요처에서는 이러한 고비용의 공간정보 구축에 어려움을 느끼는 경우가 대부분이다. 따라서 본 연구에서는 저비용의 3D 공간정보 모델을 구축하기 위한 효율적인 방안을 제시하는 것을 목적으로 하였다. 현재의 3D 모델의 구축 방법 중 가장 효율적인 방법으로는 기존에 구축되어 있는 Point Cloud, UAV 관측영상 등의 원시데이터를 활용하여 비용을 절감시키는 방법이 있지만, 이는 관리하는 기관이 분리되어 있고 사용하기 위해 요청하는 절차가 복잡하여 활용에 제한이 있었다. 본 연구에서는 이를 해결하기 위해서 도로대장 관리 분야를 대상으로 3D 구축에 필요한 기반데이터를 통합하여 연계하고 관리 할 수 있는 통합관리 시스템 개발을 수행하였으며, 다양한 형태의 원시자료를 Point Cloud 형식으로 구성하여 도로대장 관리에 적용할 경우 6개의 주요 관리항목을 효과적 구축 및 관리할 수 있을 것으로 판단되었다.

Development of a Reduction Algorithm of GEO Satellite Optical Observation Data for Optical Wide Field Patrol (OWL)

  • Park, Sun-youp;Choi, Jin;Jo, Jung Hyun;Son, Ju Young;Park, Yung-Sik;Yim, Hong-Suh;Moon, Hong-Kyu;Bae, Young-Ho;Choi, Young-Jun;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권3호
    • /
    • pp.201-207
    • /
    • 2015
  • An algorithm to automatically extract coordinate and time information from optical observation data of geostationary orbit satellites (GEO satellites) or geosynchronous orbit satellites (GOS satellites) is developed. The optical wide-field patrol system is capable of automatic observation using a pre-arranged schedule. Therefore, if this type of automatic analysis algorithm is available, daily unmanned monitoring of GEO satellites can be possible. For data acquisition for development, the COMS1 satellite was observed with 1-s exposure time and 1-m interval. The images were grouped and processed in terms of "action", and each action was composed of six or nine successive images. First, a reference image with the best quality in one action was selected. Next, the rest of the images in the action were geometrically transformed to fit in the horizontal coordinate system (expressed in azimuthal angle and elevation) of the reference image. Then, these images were median-combined to retain only the possible non-moving GEO candidates. By reverting the coordinate transformation of the positions of these GEO satellite candidates, the final coordinates could be calculated.

중력 데이터 해석과 드론원격정보를 이용한 지반의 다짐도 평가 (Evaluation of Soil Compaction Using Gravity Field Interpretation and UAV-based Remote Sensing Information)

  • 김성욱;최승찬;최은경;이영재;고대홍;이규환
    • 지질공학
    • /
    • 제31권3호
    • /
    • pp.283-293
    • /
    • 2021
  • 고해상 드론 기반의 지형 정보와 중력장 데이터를 이용하여 다짐지반의 모양과 균질성을 분석하였다. 지형과 수문 모형에서 계산된 지형요소 중 곡률은 다짐과정에서 발생한 지형의 변화를 효과적으로 보여 주었으며 이를 통해 불균질 다짐 영역을 확인할 수 있다. 지형 정보의 적정 해상도는 10 cm 정도였다. 성토지반의 공간적인 밀도변화를 분석하기 위해 중력장 해석을 수행하였으며 완전 부게이상의 변화로부터 불균질 다짐 영역과 지하 밀도구조 모델링을 통해 다짐도 차이에 의한 불균질 영역을 파악하였다. 연구결과로부터 지형요소와 중력장 해석법은 다짐된 지반의 균질성을 평가법이 될 수 있을 것으로 판단된다.