• Title/Summary/Keyword: genotyping

Search Result 724, Processing Time 0.022 seconds

D2GSNP: a web server for the selection of Single Nucleotide Polymorphisms within human disease genes

  • Kang Hyo-Jin;Hong Tae-Hui;Chung Won-Hyong;Kim Young-Uk;Jung Jin-Hee;Hwang So-Hyun;Han A-Reum;Kim Young-Joo
    • Genomics & Informatics
    • /
    • v.4 no.1
    • /
    • pp.45-47
    • /
    • 2006
  • D2GSNP is a web-based server for the selection of single nucleotide polymorph isms (SNPs) within genes related to human diseases. The D2GSNP is based on a relational database created by downloading and parsing OMIM, GAD, and dbSNP, and merging it with positional information of UCSC Golden Path. Totally our server provides 5,142 and 1,932 non-redundant disease genes from OMIM and GAD, respectively. With the D2GSNP web interface, users can select SNPs within genes responding to certain diseases and get their flanking sequences for further genotyping experiments such as association studies.

Current insights into inherited bone marrow failure syndromes

  • Chung, Nack-Gyun;Kim, Myungshin
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.8
    • /
    • pp.337-344
    • /
    • 2014
  • Inherited bone marrow failure syndrome (IBMFS) encompasses a heterogeneous and complex group of genetic disorders characterized by physical malformations, insufficient blood cell production, and increased risk of malignancies. They often have substantial phenotype overlap, and therefore, genotyping is often a critical means of establishing a diagnosis. Current advances in the field of IBMFSs have identified multiple genes associated with IBMFSs and their pathways: genes involved in ribosome biogenesis, such as those associated with Diamond-Blackfan anemia and Shwachman-Diamond syndrome; genes involved in telomere maintenance, such as dyskeratosis congenita genes; genes encoding neutrophil elastase or neutrophil adhesion and mobility associated with severe congenital neutropenia; and genes involved in DNA recombination repair, such as those associated with Fanconi anemia. Early and adequate genetic diagnosis is required for proper management and follow-up in clinical practice. Recent advances using new molecular technologies, including next generation sequencing (NGS), have helped identify new candidate genes associated with the development of bone marrow failure. Targeted NGS using panels of large numbers of genes is rapidly gaining potential for use as a cost-effective diagnostic tool for the identification of mutations in newly diagnosed patients. In this review, we have described recent insights into IBMFS and how they are advancing our understanding of the disease's pathophysiology; we have also discussed the possible implications they will have in clinical practice for Korean patients.

Distribution of Genetic Variants in Korean Soybeans

  • Song, Kitae;Kim, Jeong Hoon;Yoon, Gi Yong;Kim, Hyo Chul;Shin, Seungho;Yim, Won Cheol;Kim, Kyung-Hee;Lee, Byung-Moo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.2
    • /
    • pp.224-230
    • /
    • 2015
  • Next generation sequencing technologies provide opportunities to reveal the genetic variants and differentially expressedgenes. The genetic variants are closely relevance to understanding of genes and phenotypic differences related to agronomic characteristics among cultivars. In this study, we conducted RNA-seq using two Korean soybean accessions, including Daewon and Hwangkeum, by using next generation sequencing against Williams 82 genome as reference. A number of variants such assingle nucleotide variants (SNV), multiple nucleotide variants (MNV), insertion/deletion (InDel) and replacement, was 34,411 and 55,544 in Daewon and Hwangkeum, respectively. Among these variants, 9,611 nonsynonymous variants were detected within 4,290 genes in Daewon and 13,225 non-synonymous variants were located on 5,672 genes in Hwangkeum. The distribution of nonsynonymous variants and expression values of genes can serve as invaluable resource for genotyping and study of traits within genes for soybean improvements.

BRAF Mutations in Iranian Patients with Papillary Thyroid Carcinoma

  • Ranjbari, Nastran;Almasi, Sara;Mohammadi-asl, Javad;Rahim, Fakher
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2521-2523
    • /
    • 2013
  • Background: Papillary thyroid cancer or papillary thyroid carcinoma (PTC) is the most common thyroid cancer. The fact that it occasionally occurs in women aged 30-40 years old suggests that genetic alterations are involved its genesis. Recently, activator mutations in BRAF gene have been relatively frequently discovered. Materials and Methods: In this study, we tested 63 DNA samples from PTC patients to identify the V600E mutation frequency in the Ahvaz population. DNA was isolated from formalin fixed paraffin-embedded (FFPE) PTC tumor tissues. Genotyping was performed by PCR-RFLP and confirmed by direct DNA sequencing of a subset of PCR products. PCR-RFLP data were reported as genotype frequencies and percentages. Results: Forty nine out of 63 patients (77.8%) had a mutated heterozygote form while 14 (22.2%) showed normal genotype but none demonstrated a mutant homozygote genotype. The frequency of V600E mutation was significantly high in PTC patients. Conclusions: These findings support involvement of V600E mutations in PTC occurrence in Iran. Assessment of correlations between BRAF V600E mutations and papillary thyroid cancer progression needs to be performed.

Prevalence of Cervical Human Papilloma Virus Infection Among Married Women in Vietnam, 2011

  • Vu, Lan T.H.;Bui, Dieu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.37-40
    • /
    • 2012
  • The burden of cervical cancer is increasing in Vietnam in the recent years, infection with high risk HPV being the cause. This study aimed to examine the prevalence of HPV and the distribution of HPV specific types among the general population in 5 big cities in Vietnam. Totals of 1500 women in round 1 and 3000 in round 2 were interviewed and underwent gynecological examination. HPV infection status, and HPV genotyping test were perfoirmed for all participants. Results indicated that the prevalence of HPV infection in 5 cities ranged from 6.1% to 10.2% with Can Tho having highest prevalence. The most common HPV types in all 5 cities were HPV 16, 18 and 58. Most of the positive cases were infected with high risk HPV, especially in Hanoi and Can Tho where more than 90% positive cases were high risk HPV. Furthermore, in Can Tho more than 60% of women were infected with multiple HPV types. The information from this study can be used to provide updated data for planning preventive activities for cervical cancer in the studied cities.

Methylenetetrahydrofolate Reductase Gene Polymorphisms as Predictive and Prognostic Biomarkers in Ovarian Cancer Risk

  • Gao, Song;Liu, Ning;Ma, Yang;Ying, Liu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.569-573
    • /
    • 2012
  • Early diagnosis and better prognosis of ovarian cancer is still a challenge. Besides environmental risk factors, genetic factors have established a role in pathogenesis of ovarian cancer. Methods: A case-control and a prospective study design conducted in 224 ovarian cancer patients and 432 controls in Chinese population. MTHFR C677T genotyping was done by PCR-RFLP. Results: Patients with ovarian cancer is associated with a higher less number of delivery and less frequent oral contraceptive use. When potential confounding factors adjusted logistic regression analysis between cases and controls were performed, significant association was obtained for 677T/T genotype and ovarian cancer (OR=3.13, 95% CI=1.59-5.72). Cox regression survival analysis showed individuals carrying T/T genotype had significantly increased HR for death in ovarian cancer patients (HR=2.86, 95% CI=1.27-7.93). In conclusion, we observed that the MTHFR C677T polymorphism is associated with the susceptibility and survival of ovarian cancer in Chinese population.

Association of XPD and XRCC1 Genetic Polymorphisms with Hepatocellular Carcinoma Risk

  • Guo, Lian-Yi;Jin, Xu-Peng;Niu, Wei;Li, Xiao-Fei;Liu, Bao-Hai;Wang, Yu-Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4423-4426
    • /
    • 2012
  • Aim: XRCC1 and XPD are two major repair genes involved in nucleotide excision repair (NER), which is reported to be associated with risk of several cancers. We explored the association of XRCC1 and XPD polymorphisms with the risk of HCC. Methods: A total of 410 cases with HCC and 410 health controls were collected. XRCC1 Arg194Trp, XRCC1 Arg399Gln, XPD Lys751Gln and XPD Asp312Asn genotyping was performed by duplex polymerase-chain-reaction with the confronting-two-pair primer (PCR-CTPP) method. Results: XRCC1 194Trp/Trp was strongly significantly associated with an increased risk of HCC cancer when compared with the wide-type genotype (OR=2.26, 95% CI=(1.23-5.38). Individuals carrying the XRCC1 399Gln/Gln showed increased risk of HCC (OR=1.74, 95%CI=1.06-2.74). The XPD 751Gln/Gln and Gln allele genotype were associated with strong elevated susceptibility to HCC (OR=3.51 and 1.42, respectively). Conclusion: These results suggest that polymorphisms in XRCC1 and XPD may have functional significance in risk of HCC.

Risk Effects of GST Gene Polymorphisms in Patients with Acute Myeloid Leukemia: A Prospective Study

  • Zhou, Lei;Zhu, Yan-Yun;Zhang, Xiao-Dong;Li, Yang;Liu, Zhuo-Gang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3861-3864
    • /
    • 2013
  • Glutathione S-transferase (GST) enzyme levels are associated with risk of many cancers, including hematologic tumours. We here aimed to investigate the relationships between GSTM1, GSTT1 and GSTP1 polymorphisms and the risk of AML. Genotyping of GSTs was based upon duplex polymerase-chain-reactions with the confronting-two-pair primer (PCR-CTPP) method in 163 cases and 204 controls. Individuals carrying null GSTT1 genotype had a 1.64 fold risk of acute leukemia relative to a non-null genotype (P<0.05). A heavy risk was observed in those carrying combination of null genotypes of GSTM1 and GSTT1 and GSTP1 Val allele genotypes when compared with those carrying wild genotypes, with an OR (95% CI) of 3.39 (1.26-9.26) (P<0.05). These findings indicate that genetic variants of GST and especially the GSTT1 gene have a critical function in the development of AML. Our study offers important insights into the molecular etiology of AML.

Investigation into the Possible Genetic Role of Serotonin and Dopamine Transporters in Psychological Resilience

  • Cho, Sang Hyun;Chung, Jae Kyung;Bang, Yang Weon;Joo, Eun-Jeong
    • Korean Journal of Biological Psychiatry
    • /
    • v.25 no.1
    • /
    • pp.16-20
    • /
    • 2018
  • Objectives Psychological resilience is the ability to cope with stress. The genetic background behind psychological resilience is not much known. The serotonin transporter and dopamine transporter are implicated in stress related psychology and emotional processing. The aim of this study is to investigate a possible genetic role of functional polymorphisms of serotonin and dopamine transporters for psychological resilience. Methods A total of 951 healthy adult subjects were included. Psychological resilience was measured using Connor-Davidson Resilience Scale (CD-RISC). Genotyping was performed for serotonin transporter gene(SERT) promoter variable number tandem repeat (VNTR) and dopamine transporter gene(DAT1) 3'-untranslated region (UTR) VNTR. Genetic association analysis was conducted between genotypes and the CD-RISC score. Results No genetic association was observed for SERT promoter VNTR or DAT1 3'-UTR VNTR with CD-RISC score. No genetic interaction between SERT promoter VNTR and DAT1 3'-UTR VNTR with CD-RISC score was detected. Conclusions Either serotonin or dopamine transporter did not seem to play a significant role for psychological resilience in this sample.

  • PDF

Perspectives on high throughput phenotyping in developing countries

  • Chung, Yong Suk;Kim, Ki-Seung;Kim, Changsoo
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.3
    • /
    • pp.317-323
    • /
    • 2018
  • The demand for crop production is increasingly becoming steeper due to the rapid population growth. As a result, breeding cycles should be faster than ever before. However, the current breeding methods cannot meet this requirement because traditional phenotyping methods lag far behind even though genotyping methods have been drastically developed with the advent of next-generation sequencing technology over a short period of time. Consequently, phenotyping has become a bottleneck in large-scale genomics-based plant breeding studies. Recently, however, phenomics, a new discipline involving the characterization of a full set of phenotypes in a given species, has emerged as an alternative technology to come up with exponentially increasing genomic data in plant breeding programs. There are many advantages for using new technologies in phenomics. Yet, the necessity of diverse man power and huge funding for cutting-edge equipment prevent many researchers who are interested in this area from adopting this new technique in their research programs. Currently, only a limited number of groups mostly in developed countries have initiated phenomic studies using high throughput methods. In this short article, we describe the strategies to compete with those advanced groups using limited resources in developing countries, followed by a brief introduction of high throughput phenotyping.