• Title/Summary/Keyword: genome-wide association studies

Search Result 180, Processing Time 0.024 seconds

Association between a Genetic Variant of CACNA1C and the Risk of Schizophrenia and Bipolar I Disorder Across Diagnostic Boundaries (조현병과 제1형 양극성장애의 진단 경계를 넘어선 공통적 후보유전자로서의 CACNA1C에 대한 단일염기다형성 연합 연구)

  • Lee, Bora;Baek, Ji Hyun;Cho, Eun Young;Yang, So-Yung;Choi, Yoo Jin;Lee, Yu-Sang;Ha, Kyooseob;Hong, Kyung Sue
    • Korean Journal of Schizophrenia Research
    • /
    • v.21 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • Objectives : Genome-wide association studies (GWASs) and meta-analyses indicate that single-nucleotide polymorphisms (SNPs) in the a-1C subunit of the L-type voltage-dependent calcium channel (CACNA1C) gene increase the risk for schizophrenia and bipolar disorders (BDs). We investigated the association between the genetic variants on CACNA1C and schizophrenia and/or BDs in the Korean population. Methods : A total of 582 patients with schizophrenia, 336 patients with BDs consisting of 179 bipolar I disorder (BD-I) and 157 bipolar II disorder (BD-II), and 502 healthy controls were recruited. Based on previous results from other populations, three SNPs (rs10848635, rs1006737, and rs4765905) were selected and genotype-wise association was evaluated using logistic regression analysis under additive, dominant and recessive genetic models. Results : rs10848635 showed a significant association with schizophrenia (p=0.010), the combined schizophrenia and BD group (p=0.018), and the combined schizophrenia and BD-I group (p=0.011). The best fit model was dominant model for all of these phenotypes. The association remained significant after correction for multiple testing in schizophrenia and the combined schizophrenia and BD-I group. Conclusion : We identified a possible role of CACNA1C in the common susceptibility of schizophrenia and BD-I. However no association trend was observed for BD-II. Further efforts are needed to identify a specific phenotype associated with this gene crossing the current diagnostic categories.

An extension of multifactor dimensionality reduction method for detecting gene-gene interactions with the survival time (생존시간과 연관된 유전자 간의 교호작용에 관한 다중차원축소방법의 확장)

  • Oh, Jin Seok;Lee, Seung Yeoun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.5
    • /
    • pp.1057-1067
    • /
    • 2014
  • Many genetic variants have been identified to be associated with complex diseases such as hypertension, diabetes and cancers throughout genome-wide association studies (GWAS). However, there still exist a serious missing heritability problem since the proportion explained by genetic variants from GWAS is very weak less than 10~15%. Gene-gene interaction study may be helpful to explain the missing heritability because most of complex disease mechanisms are involved with more than one single SNP, which include multiple SNPs or gene-gene interactions. This paper focuses on gene-gene interactions with the survival phenotype by extending the multifactor dimensionality reduction (MDR) method to the accelerated failure time (AFT) model. The standardized residual from AFT model is used as a residual score for classifying multiple geno-types into high and low risk groups and algorithm of MDR is implemented. We call this method AFT-MDR and compares the power of AFT-MDR with those of Surv-MDR and Cox-MDR in simulation studies. Also a real data for leukemia Korean patients is analyzed. It was found that the power of AFT-MDR is greater than that of Surv-MDR and is comparable with that of Cox-MDR, but is very sensitive to the censoring fraction.

Study about the Association between Diabetes and the Targeted SNPs of TCF7L2 and FTO Genes (당뇨병에서 TCF7L2와 FTO 유전자의 특정 단일염기다형성과의 연관성 연구)

  • Hsia, Yu-Chun;Park, Jong-Hyung;Jun, Chan-Yong;Ko, Seung-Gyu;Choi, You-Kyung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.504-511
    • /
    • 2010
  • Diabetes is a disease that contains a high concentration of glucose in blood and due to defects in either insulin secretion or insulin action. Although the distinctive causes and factors of diabetes have not been clarified, the genetic factors are suggested as a main susceptibility until now. SNP (Single Nucleotide Polymorphism), as the most common genetic variation, has an influence on personal susceptibility for diseases. A nonsynonymous SNP, which changes the amino acid of the protein and its function, is especially important. Therefore, this study hypothesized that there are associations between specific SNPs of the targeted genes. Transcription factor 7-like 2 (TCF7L2) and fat mass and obesity associated (FTO) genes were selected as target genes from the results of genome-wide association and other related research studies. Second, four nonsynonymous SNPs (three in TCF7L2 and one in FTO gene) were selected as target SNPs by using public database of NCBI (National Center for Biotechnology Information). The recruited personnel was classified into three subgroups of diabetes, impaired fasting glucose (IFG) and normal groups. The individual genotypes of each group were analyzed by resequencing. None of genetic variations at four targeted SNP sites was revealed in all samples of this study. However, this study found two new SNPs that were not reported in TCF7L2 gene. One is synonymous SNP, which is heterozygous of C/T and no amino acid change of asparagine/asparagines, was located at c1641 and found in one normal person. Another is nonsynonymous SNP, which is heterozygous of G/A, was located at c1501 and found in two samples. This new discovered nonsynonymous SNP induce the amino acid change from alanine to threonine. Moreover, this new nonsynonymous SNP was found among two persons, one of whom was a diabetes patient and the other one was a person at boundary between IFG and normal, suggesting that this variant might be associated with IFG or diabetes. Even if there is a limitation of sample number for statistical power, this study has an importance due to the discovery of new SNPs. In the future study, a large sample number of diabetes cohort will be needed to investigate the frequency and association with new discovered SNP.

Genetic Variants at 6p21.1 and 7p15.3 Identified by GWASs of Multiple Cancers and Ovarian Cancer Risk: a Case-control Study in Han Chinese Women

  • Li, Da-Ke;Han, Jing;Liu, Ji-Bin;Jin, Guang-Fu;Qu, Jun-Wei;Zhu, Meng;Wang, Yan-Ru;Jiang, Jie;Ma, Hong-Xia
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.123-127
    • /
    • 2014
  • A recent study summarized several published genome-wide association studies (GWASs) of cancer and reported two pleiotropic loci at 6p21.1 and 7p15.3 contributing to multiple cancers including lung cancer, noncardia gastric cancer (NCGC), and esophageal squamous-cell carcinoma (ESCC) in Han Chinese. However, it is not known whether such genetic variants have similar effects on the risk of gynecologic cancers, such as ovarian cancer. Hence, we explored associations between genetic variants in 6p21.1 and 7p15.3 and ovarian cancer risk in Han Chinese women. We performed an independent case-control study by genotyping the two loci (rs2494938 A > G at 6p21.1 and rs2285947 A > G at 7p15.3) in a total of 377 ovarian cancer cases and 1,034 cancer-free controls using TaqMan allelic discrimination assay. We found that rs2285947 at 7p15.3 was significantly associated with risk of ovarian cancer with per allele odds ratio (OR) of 1.33 [95% confidence interval (CI): 1.08-1.64, P=0.008]. However, no significant association was observed between rs2494938 and ovarian cancer risk. Our results showed that rs2285947 at 7p15.3 may also contribute to the development of ovarian cancer in Han Chinese women, further suggesting pleiotropy of 7p15.3 in multiple cancers.

Common Genetic Variants of PSCA, MUC1 and PLCE1 Genes are not Associated with Colorectal Cancer

  • Kupcinskas, Juozas;Gyvyte, Ugne;Bruzaite, Indre;Leja, Marcis;Kupcinskaite-Noreikiene, Rita;Pauzas, Henrikas;Tamelis, Algimantas;Jonaitis, Laimas;Skieceviciene, Jurgita;Kiudelis, Gediminas
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.6027-6032
    • /
    • 2015
  • Background: Polymorphisms of genes encoding PSCA, PLCE1 and MUC1 have been associated with the risk of different cancers in genome wide association studies (GWAS). Up to date there are limited data on the role of these genetic alterations in colorectal cancer (CRC) development. The aim of this study was to evaluate potential associations between single nucleotide polymorphisms (SNPs) of genes encoding PSCA, PLCE1 and MUC1 and the presence of CRC in European populations. Materials and Methods: Gene polymorphisms were analyzed in 574 European subjects (controls: n=382; CRC: n=192). PSCA C>T (rs2294008), PSCA G>A (rs2976392), MUC1 A>G (rs4072037) and PLCE1 A>G (rs2274223) SNPs were genotyped by RT-PCR. Results: The distribution of genotypes for all four SNPs was in line with the Hardy-Weinberg equilibrium (rs2294008, P=0.153; rs2976392, P=0.269; rs4072037, P=0.609; rs2274223, P=0.858). The distribution of genotypes and alleles of PSCA C>T, PSCA G>A, MUC1 A>G and PLCE1 A>G SNPs was similar among controls and CRC patient groups (P>0.05). GG genotype of MUC1 SNP was more frequent in CRC patients (24.0%) than in controls (20.2%); however, this association failed to reach significance (OR-1.45, P=0.15). Overall, in the present study SNPs of PSCA (rs2294008, rs2976392), MUC1 (rs4072037) and PLCE1 (rs2274223) genes were not associated with the presence of CRC. Conclusions: Gene polymorphisms of PSCA, PLCE1 and MUC1 genes are not associated with the presence of CRC in European subjects.

rs10505474 and rs7837328 at 8q24 Cumulatively Confer Risk of Prostate Cancer in Northern Han Chinese

  • Zhang, Lin-Lin;Sun, Liang;Zhu, Xiao-Quan;Xu, Yong;Yang, Kuo;Yang, Fan;Yang, Yi-Ge;Chen, Guo-Qiang;Fu, Ji-Cheng;Zheng, Chen-Guang;Li, Ying;Mu, Xiao-Qiu;Shi, Xiao-Hong;Zhao, Fan;Wang, Fei;Yang, Ze;Wang, Bin-You
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3129-3132
    • /
    • 2014
  • Aims: Genome-wide association studies (GWAS) have identified several risk variants for prostate cancer (pCa) mainly in Europeans, which need to be further verified in other racial groups. We selected six previously identified variants as candidates and to define the association with PCa in Northern Han Chinese. Methods: 749 subjects from Beijing and Tianjin in Northern China were included. Six variants (rs10505474, rs7837328, rs4242384, rs7813, rs486907 and rs1058205) were genotyped by high resolution melting (HRM) assays. The individual and cumulative contribution for of the risk of PCa and clinical covariates were analyzed. Results: Among the six candidate variants, onlyrs10505474, and rs7837328, both locating at 8q24 region, were associated with PCa in our population.rs10505474 (A) was associated with PCa ($OR_{recessive}=1.56$, p=0.006); and rs7837328 (A) was associated with PCa ($OR_{dominant}=1.38$, p=0.042/$OR_{recessive}=1.99$, p=0.003). Moreover, we observed a cumulative effects between them ($p_{trend}=2.58{\times}10^{-5}$). The joint population attributable risk showed the two variants might account for 71.85% of PCa risk. In addition, we found the homozygotes of rs10505474 (A) and rs7837328 (A) were associated with PCa clinical covariants (age at onset, tumor stage, respectively) ($p_{age}=0.046$, $P_{tumorstage}=0.048$). Conclusion: rs10505474 (A) and rs7387328 (A) at 8q24 are associated with PCa and cumulatively confer risk, suggesting the two variations could determine susceptibility to PCa in the Northern Chinese Han population.

Comparative assessment of the effective population size and linkage disequilibrium of Karan Fries cattle revealed viable population dynamics

  • Shivam Bhardwaj;Oshin Togla;Shabahat Mumtaz;Nistha Yadav;Jigyasha Tiwari;Lal Muansangi;Satish Kumar Illa;Yaser Mushtaq Wani;Sabyasachi Mukherjee;Anupama Mukherjee
    • Animal Bioscience
    • /
    • v.37 no.5
    • /
    • pp.795-806
    • /
    • 2024
  • Objective: Karan Fries (KF), a high-producing composite cattle was developed through crossing indicine Tharparkar cows with taurine bulls (Holstein Friesian, Brown Swiss, and Jersey), to increase the milk yield across India. This composite cattle population must maintain sufficient genetic diversity for long-term development and breed improvement in the coming years. The level of linkage disequilibrium (LD) measures the influence of population genetic forces on the genomic structure and provides insights into the evolutionary history of populations, while the decay of LD is important in understanding the limits of genome-wide association studies for a population. Effective population size (Ne) which is genomically based on LD accumulated over the course of previous generations, is a valuable tool for e valuation of the genetic diversity and level of inbreeding. The present study was undertaken to understand KF population dynamics through the estimation of Ne and LD for the long-term sustainability of these breeds. Methods: The present study included 96 KF samples genotyped using Illumina HDBovine array to estimate the effective population and examine the LD pattern. The genotype data were also obtained for other crossbreds (Santa Gertrudis, Brangus, and Beefmaster) and Holstein Friesian cattle for comparison purposes. Results: The average LD between single nucleotide polymorphisms (SNPs) was r2 = 0.13 in the present study. LD decay (r2 = 0.2) was observed at 40 kb inter-marker distance, indicating a panel with 62,765 SNPs was sufficient for genomic breeding value estimation in KF cattle. The pedigree-based Ne of KF was determined to be 78, while the Ne estimates obtained using LD-based methods were 52 (SNeP) and 219 (genetic optimization for Ne estimation), respectively. Conclusion: KF cattle have an Ne exceeding the FAO's minimum recommended level of 50, which was desirable. The study also revealed significant population dynamics of KF cattle and increased our understanding of devising suitable breeding strategies for long-term sustainable development.

Allele Frequencies of the Single Nucleotide Polymorphisms Related to the Body Burden of Heavy Metals in the Korean Population and Their Ethnic Differences

  • Eom, Sang-Yong;Lim, Ji-Ae;Kim, Yong-Dae;Choi, Byung-Sun;Hwang, Myung Sil;Park, Jung-Duck;Kim, Heon;Kwon, Ho-Jang
    • Toxicological Research
    • /
    • v.32 no.3
    • /
    • pp.195-205
    • /
    • 2016
  • This study was performed to select single nucleotide polymorphisms (SNPs) related to the body burden of heavy metals in Koreans, to provide Korean allele frequencies of selected SNPs, and to assess the difference in allele frequencies with other ethnicities. The candidate-gene approach method and genome-wide association screening were used to select SNPs related to the body burden of heavy metals. Genotyping analysis of the final 192 SNPs selected was performed on 1,483 subjects using the VeraCode Goldengate assay. Allele frequencies differences and genetic differentiations between the Korean population and Chinese (CHB), Japanese (JPT), Caucasian (CEU), and African (YIR) populations were tested by Fisher's exact test and fixation index ($F_{ST}$), respectively. The Korean population was genetically similar to the CHB and JPT populations ($F_{ST}$ < 0.05, for all SNPs in both populations). However, a significant difference in the allele frequencies between the Korean and CEU and YIR populations were observed in 99 SNPs (60.7%) and 120 SNPs (73.6%), respectively. Ten (6.1%) and 26 (16.0%) SNPs had genetic differentiation ($F_{ST}$ > 0.05) among the Korean-CEU and Korean-YIR comparisons, respectively. The SNP with the largest $F_{ST}$ value between the Korean and African populations was cystathionine-${\beta}$-synthase rs234709 ($F_{ST}$: KOR-YIR, 0.309; KOR-CEU, 0.064). Our study suggests that interethnic differences exist in SNPs associated with heavy metals of Koreans, and it should be considered in future studies that address ethnic differences in heavy-metal concentrations in the body and genetic susceptibility to the body burden of heavy metals.

Transforming growth factor beta receptor II polymorphisms are associated with Kawasaki disease

  • Choi, Yu-Mi;Shim, Kye-Sik;Yoon, Kyung-Lim;Han, Mi-Young;Cha, Sung-Ho;Kim, Su-Kang;Jung, Joo-Ho
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.1
    • /
    • pp.18-23
    • /
    • 2012
  • Purpose: Transforming growth factor beta receptor 2 ($TGFBR2$) is a tumor suppressor gene that plays a role in the differentiation of striated cells and remodeling of coronary arteries. Single nucleotide polymorphisms (SNPs) of this gene are associated with Marfan syndrome and sudden death in patients with coronary artery disease. Cardiovascular remodeling and T cell activation of $TGFBR2$ gene suggest that the $TGFBR2$ gene SNPs are related to the pathogenesis of Kawasaki disease (KD) and coronary artery lesion (CAL). Methods: The subjects were 105 patients with KD and 500 healthy adults as controls. Mean age of KD group was 32 months age and 26.6% of those had CAL. We selected $TGFBR2$ gene SNPs from serum and performed direct sequencing. Results: The sequences of the eleven SNPs in the $TGFBR2$ gene were compared between the KD group and controls. Three SNPs (rs1495592, rs6550004, rs795430) were associated with development of KD ($P$=0.019, $P$=0.026, $P$=0.016, respectively). One SNP (rs1495592) was associated with CAL in KD group ($P$=0.022). Conclusion: Eleven SNPs in $TGFBR2$ gene were identified at that time the genome wide association. But, with the change of the data base, only six SNPs remained associated with the $TGFBR2$ gene. One of the six SNPs (rs6550004) was associated with development of KD. One SNP associated with CAL (rs1495592) was disassociated from the $TGFBR2$ gene. The other five SNPs were not functionally identified, but these SNPs are notable because the data base is changing. Further studies involving larger group of patients with KD are needed.

The Progression of SARS Coronavirus 2 (SARS-CoV2): Mutation in the Receptor Binding Domain of Spike Gene

  • Sinae Kim;Jong Ho Lee;Siyoung Lee;Saerok Shim;Tam T. Nguyen;Jihyeong Hwang;Heijun Kim;Yeo-Ok Choi;Jaewoo Hong;Suyoung Bae;Hyunjhung Jhun;Hokee Yum;Youngmin Lee;Edward D. Chan;Liping Yu;Tania Azam;Yong-Dae Kim;Su Cheong Yeom;Kwang Ha Yoo;Lin-Woo Kang;Kyeong-Cheol Shin;Soohyun Kim
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.41.1-41.11
    • /
    • 2020
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is a positive-sense single-stranded RNA (+ssRNA) that causes coronavirus disease 2019 (COVID-19). The viral genome encodes twelve genes for viral replication and infection. The third open reading frame is the spike (S) gene that encodes for the spike glycoprotein interacting with specific cell surface receptor - angiotensin converting enzyme 2 (ACE2) - on the host cell membrane. Most recent studies identified a single point mutation in S gene. A single point mutation in S gene leading to an amino acid substitution at codon 614 from an aspartic acid 614 into glycine (D614G) resulted in greater infectivity compared to the wild type SARS-CoV2. We were interested in investigating the mutation region of S gene of SARS-CoV2 from Korean COVID-19 patients. New mutation sites were found in the critical receptor binding domain (RBD) of S gene, which is adjacent to the aforementioned D614G mutation residue. This specific sequence data demonstrated the active progression of SARS-CoV2 by mutations in the RBD of S gene. The sequence information of new mutations is critical to the development of recombinant SARS-CoV2 spike antigens, which may be required to improve and advance the strategy against a wide range of possible SARS-CoV2 mutations.