Browse > Article
http://dx.doi.org/10.7314/APJCP.2015.16.14.6027

Common Genetic Variants of PSCA, MUC1 and PLCE1 Genes are not Associated with Colorectal Cancer  

Kupcinskas, Juozas (Department of Gastroenterology, Lithuanian University of Health Sciences)
Gyvyte, Ugne (Institute for Digestive Research, Lithuanian University of Health Sciences)
Bruzaite, Indre (Institute for Digestive Research, Lithuanian University of Health Sciences)
Leja, Marcis (Faculty of Medicine, University of Latvia, Digestive Diseases Center GASTRO, Riga East University Hospital)
Kupcinskaite-Noreikiene, Rita (Institute for Digestive Research, Lithuanian University of Health Sciences)
Pauzas, Henrikas (Department of Surgery, Lithuanian University of Health Sciences)
Tamelis, Algimantas (Department of Surgery, Lithuanian University of Health Sciences)
Jonaitis, Laimas (Department of Gastroenterology, Lithuanian University of Health Sciences)
Skieceviciene, Jurgita (Institute for Digestive Research, Lithuanian University of Health Sciences)
Kiudelis, Gediminas (Department of Gastroenterology, Lithuanian University of Health Sciences)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.16, no.14, 2015 , pp. 6027-6032 More about this Journal
Abstract
Background: Polymorphisms of genes encoding PSCA, PLCE1 and MUC1 have been associated with the risk of different cancers in genome wide association studies (GWAS). Up to date there are limited data on the role of these genetic alterations in colorectal cancer (CRC) development. The aim of this study was to evaluate potential associations between single nucleotide polymorphisms (SNPs) of genes encoding PSCA, PLCE1 and MUC1 and the presence of CRC in European populations. Materials and Methods: Gene polymorphisms were analyzed in 574 European subjects (controls: n=382; CRC: n=192). PSCA C>T (rs2294008), PSCA G>A (rs2976392), MUC1 A>G (rs4072037) and PLCE1 A>G (rs2274223) SNPs were genotyped by RT-PCR. Results: The distribution of genotypes for all four SNPs was in line with the Hardy-Weinberg equilibrium (rs2294008, P=0.153; rs2976392, P=0.269; rs4072037, P=0.609; rs2274223, P=0.858). The distribution of genotypes and alleles of PSCA C>T, PSCA G>A, MUC1 A>G and PLCE1 A>G SNPs was similar among controls and CRC patient groups (P>0.05). GG genotype of MUC1 SNP was more frequent in CRC patients (24.0%) than in controls (20.2%); however, this association failed to reach significance (OR-1.45, P=0.15). Overall, in the present study SNPs of PSCA (rs2294008, rs2976392), MUC1 (rs4072037) and PLCE1 (rs2274223) genes were not associated with the presence of CRC. Conclusions: Gene polymorphisms of PSCA, PLCE1 and MUC1 genes are not associated with the presence of CRC in European subjects.
Keywords
Colorectal cancer; gene polymorphism; PSCA; PLCE1; MUC1;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kupcinskas J, Wex T, Link A, et al (2014). Gene polymorphisms of micrornas in helicobacter pylori-induced high risk atrophic gastritis and gastric cancer. PLoS One, 9, 87467.   DOI
2 Li F, Zhong M-Z, Li J-H, et al (2012a). Case-control study of single nucleotide polymorphisms of PSCA and MUC1 genes with gastric cancer in a Chinese. Asian Pac J Cancer Prev, 13, 2593-6.   DOI
3 Li FX, Yang XX, He XQ, et al (2012b). Association of 10q23 with colorectal cancer in a Chinese population. Mol Biol Rep, 39, 9557-62.   DOI
4 Li F-X, Yang X-X, He X-Q, et al (2012c). Association of 10q23 with colorectal cancer in a Chinese population. Mol Biol Rep, 39, 9557-62.   DOI
5 Lochhead P, Frank B, Hold GL, et al (2011). Genetic variation in the prostate stem cell antigen gene and upper gastrointestinal cancer in white individuals. Gastroenterology, 140, 435-41.   DOI
6 Lu Y, Chen J, Ding Y, et al (2010). Genetic variation of PSCA gene is associated with the risk of both diffuse- and intestinaltype gastric cancer in a Chinese population. Int J Cancer, 127, 2183-9.   DOI
7 Nassiri M, Kooshyar MM, Roudbar Z, et al (2013). MINIREVIEW genes and SNPs associated with non-hereditary and hereditary colorectal cancer. Asian Pac J Cancer Prev, 14, 5609-14.   DOI   ScienceOn
8 Ou L, Guo Y, Luo C, et al (2010). RNA interference suppressing PLCE1 gene expression decreases invasive power of human bladder cancer T24 cell line. Cancer Genet Cytogenet, 200, 110-9.   DOI   ScienceOn
9 Palmer AJ, Lochhead P, Hold GL, et al (2012). Genetic variation in C20orf54, PLCE1 and MUC1 and the risk of upper gastrointestinal cancers in Caucasian populations. Eur J Cancer Prev, 21, 541-4.   DOI
10 Tanikawa C, Matsuo K, Kubo M, et al (2013). Impact of PSCA variation on gastric ulcer susceptibility. PLoS One, 8, 63698.   DOI
11 Tanikawa C, Urabe Y, Matsuo K, et al (2012). A genome-wide association study identifies two susceptibility loci for duodenal ulcer in the Japanese population. Nat Genet, 44, 430-4.   DOI
12 Umar M, Upadhyay R, Mittal B (2013). PLCE1 rs2274223 A>G polymorphism and cancer risk: a meta-analysis. Tumour Biol, 34, 3537-44.   DOI
13 Wang L, Ma J, Liu F, et al (2007). Expression of MUC1 in primary and metastatic human epithelial ovarian cancer and its therapeutic significance. Gynecol Oncol, 105, 695-702.   DOI
14 Wang L-D, Zhou F-Y, Li X-M, et al (2010). Genome-wide association study of esophageal squamous cell carcinoma in Chinese subjects identifies susceptibility loci at PLCE1 and C20orf54. Nat Genet, 42, 759-63.   DOI   ScienceOn
15 Wang Q, Chen P, Chen D, et al. (2014). Association between phospholipase C epsilon gene (PLCE1) polymorphism and colorectal cancer risk in a Chinese population. J Int Med Res, 42, 70-81.
16 Wang X, Zbou C, Qiu G, et al (2008). Screening of new tumor suppressor genes in sporadic colorectal cancer patients. Hepatogastroenterology, 55, 2039-44.
17 Williams K a, Terry KL, Tworoger SS, et al (2014). Polymorphisms of MUC16 (CA125) and MUC1 (CA15.3) in relation to ovarian cancer risk and survival. PLoS One, 9, 88334.   DOI
18 Zheng L, Zhu C, Gu J, et al (2013). Functional polymorphism rs4072037 in MUC1 gene contributes to the susceptibility to gastric cancer: evidence from pooled 6,580 cases and 10,324 controls. Mol Biol Rep, 40, 5791-6.   DOI
19 Amara N, Palapattu GS, Schrage M, et al (2001). Prostate stem cell antigen is overexpressed in human transitional cell carcinoma. Cancer Res, 61, 4660-5.
20 Abnet CC, Freedman ND, Hu N, et al (2010). A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma. Nat Genet, 42, 764-7.   DOI   ScienceOn
21 Armaghany T, Wilson JD, Chu Q, Mills G (2012). Genetic alterations in colorectal cancer. Gastrointest Cancer Res, 5, 19-27.
22 Bai Y, Edamatsu H, Maeda S, et al (2004). Crucial role of phospholipase Cepsilon in chemical carcinogen-induced skin tumor development. Cancer Res, 64, 8808-10.   DOI   ScienceOn
23 Byrd JC, Bresalier RS (2004). Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev, 23, 77-99.   DOI
24 Bunney TD, Katan M (2006). Phospholipase C epsilon: linking second messengers and small GTPases, Trends Cell Biol, 16, 640-8.   DOI
25 Cao D, Ji H, Ronnett BM (2005). Expression of mesothelin, fascin, and prostate stem cell antigen in primary ovarian mucinous tumors and their utility in differentiating primary ovarian mucinous tumors from metastatic pancreatic mucinous carcinomas in the ovary. Int J Gynecol Pathol, 24, 67-72.
26 Creaney J, Segal A, Sterrett G, et al (2008). Overexpression and altered glycosylation of MUC1 in malignant mesothelioma. Br J Cancer, 98, 1562-9.   DOI
27 Dura P, Bregitha CVV, te Morsche RHM, et al (2013). GWAS-uncovered SNPs in PLCE1 and RFT2 genes are not implicated in Dutch esophageal adenocarcinoma and squamous cell carcinoma etiology. Eur J Cancer Prev, 22, 417-9.   DOI
28 Fu Y-P, Kohaar I, Rothman N, et al (2012). Common genetic variants in the PSCA gene influence gene expression and bladder cancer risk. Proc Natl Acad Sci, 109, 4974-9.   DOI
29 Eshel R, Zanin A, Kapon D, et al (2002). Human Ly-6 antigen E48 (Ly-6D) regulates important interaction parameters between endothelial cells and head-and-neck squamous carcinoma cells. Int J Cancer, 98, 803-10.   DOI
30 Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, et al (2013). Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur J Cancer, 49, 1374-403.   DOI   ScienceOn
31 Ghosh SK, Pantazopoulos P, Medarova Z, Moore A. (2013). Expression of underglycosylated MUC1 antigen in cancerous and adjacent normal breast tissues. Clin Breast Cancer, 13, 109-18.   DOI
32 Hao N-B, He Y-F, Zhang D, et al (2013). PLCE1 polymorphism and upper gastrointestinal cancer risk: a meta-analysis. PLoS One, 8, 67229.   DOI
33 Kawaguchi T, Sho M, Tojo T, et al (2010). Clinical significance of prostate stem cell antigen expression in non-small cell lung cancer. Jpn J Clin Oncol, 40, 319-26.   DOI
34 Kohaar I, Porter-Gill P, Lenz P, et al (2013). Genetic variant as a selection marker for anti-prostate stem cell antigen immunotherapy of bladder cancer. J Natl Cancer Inst, 105, 69-73.   DOI
35 Kupcinskas J, Wex T, Bornschein J, et al (2011). Lack of association between gene polymorphisms of Angiotensin converting enzyme, Nod-like receptor 1, Toll-like receptor 4, FAS/FASL and the presence of Helicobacter pyloriinduced premalignant gastric lesions and gastric cancer in Caucasians. BMC Med Genet, 12, 112.   DOI
36 Rizzato C, Kato I, Plummer M, et al (2013). Genetic variation in PSCA and risk of gastric advanced preneoplastic lesions and cancer in relation to Helicobacter pylori infection. PLoS One, 8, 73100.   DOI
37 Purcell S, Neale B, Todd-Brown K, et al (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 81, 559-75.   DOI
38 Reiter RE, Gu Z, Watabe T, et al (1998). Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc Natl Acad Sci U S A, 95, 1735-40.   DOI
39 Rhee SG (2001). Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem, 70, 281-312.   DOI
40 Saeki N, Saito A, Choi IJ, et al (2011). A functional single nucleotide polymorphism in mucin 1, at chromosome 1q22, determines susceptibility to diffuse-type gastric cancer. Gastroenterology, 140, 892-902.   DOI
41 Saffran DC, Raitano AB, Hubert RS, et al (2001). Anti-PSCA mAbs inhibit tumor growth and metastasis formation and prolong the survival of mice bearing human prostate cancer xenografts. Proc Natl Acad Sci U S A, 98, 2658-63.   DOI
42 Sakamoto H, Yoshimura K, Saeki N, et al (2008). Genetic variation in PSCA is associated with susceptibility to diffusetype gastric cancer. Nat Genet, 40, 730-40.   DOI   ScienceOn
43 Shi Y, Hu Z, Wu C, et al (2011). A genome-wide association study identifies new susceptibility loci for non-cardia gastric cancer at 3q13.31 and 5p13.1. Nat Genet, 43, 1215-8.   DOI
44 Smith C, Lochhead P, Basavaraju U, et al (2012). Lack of association between the rs2294008 polymorphism in the prostate stem cell antigen gene and colorectal neoplasia: a case-control and immunohistochemical study. BMC Res Notes, 5, 371.   DOI
45 Zotter S, Hageman P, Lossnitzer A, et al (1988). Tissue and tumour distribution of human polymorphic epithelial mucin. Cancer Rev, 11, 55-101.