• Title/Summary/Keyword: genetic variability

Search Result 373, Processing Time 0.024 seconds

Genetic Diversity in Korean Populations of Glycine soja (Fabaceae)

  • Myong Gi Chung
    • Journal of Plant Biology
    • /
    • v.38 no.1
    • /
    • pp.39-45
    • /
    • 1995
  • Glycine soja Sieb. et Zucc., a predominantly selfing annual, has been served as a reservoir of germplasm for soybean, G. max (L.) Merr., cultivar improvement. This study describes the levels and distribution of genetic variation within and among 22 Korean populations of G. soja using starch gel electrophoresis. The species maintains very similar levels of genetic variability within populations observed in most other annuals. At the population level, the mean percent of polymorphic loci (P) was 32.6%, mean number of allele per locus (A) was 1.32, and mean expected heterozygosity (He) was 0.112. In addition, total genetic diversity (HT) calculated only for polymorphic loci was 0.347. However, significant differences in allele frequencies among populations were found for all loci (P<0.001 in each case) and, on average, about 70% of the total variation in the species is common to all populations. Indirects estimate of the number of migrants per generation (Nm=0.58, calculated from mean GST) indicates that gene flow is low among Korean populations of the species. In addition, analysis of fixation indices revealed a substantial heterozygote deficiency in most populations and at all loci. This indicates that most populations sampled may have been substructed largely due to inbreeding (predominantly selfing) and restricted gene flow, coupled with founder effect and genetic drift. Considering a high genetic divergence among populations, it is recommended that several Korean populations of the species should be preserved, especially such as populations in the eastern and southeastern Korean peninsula with high variation.

  • PDF

Genetic Diversity and Population Structure of Kaloula borealis (Anura, Microhylidae) in Korea

  • Yang, Suh-Yung;Kim, Jong-Bum;Min, Mi-Sook;Suh, Jae-Hwa;Kang, Young-Jin
    • Animal cells and systems
    • /
    • v.4 no.1
    • /
    • pp.39-44
    • /
    • 2000
  • To assess the genetic diversity and population structure of Korean K. borealis, allozyme analysis was performed. The average genetic variability of Korean K. borealis populations was %P=13.2, Ho=0.048, and He=0.045. This value was the lowest in comparison with other Korean amphibian species studied. Also, the value was much lower than that of a reference population from Chinese K. borealis (%P=50, Ho=0.125, He=0.172). Wright's F-statistics showed that Korean K. borealis has distinctly low level of gene flow among regional populations (F$_{ST}$=0.339, Nm=0.487) in comparison with other Korean amphibian species studied. However, the average level of genetic divergence among Korean K. borealis populations was moderate (Nei's D=0.020). Therefore, it appeared that low levels of genetic diversity (He=0.045) and gene flow (Nm=0.487) among regional populations ave probably due to the results of decreasing population size and patchy distribution of this species in Korea.

  • PDF

Genetic structure of Larimichthys polyactis (Pisces: Sciaenidae) in the Yellow and East China Seas inferred from microsatellite and mitochondrial DNA analyses

  • Kim, Jin-Koo;Min, Gi-Sik;Yoon, Moon-Geun;Kim, Yeong-Hye;Choi, Jung-Hwa;Oh, Taeg-Yun;Ni, Yong
    • Animal cells and systems
    • /
    • v.16 no.4
    • /
    • pp.313-320
    • /
    • 2012
  • Genetic variation was surveyed at four microsatellite loci and 1416 base pairs (bp) of the mitochondrial DNA (mtDNA) cytochrome c oxidase I gene (COI) to clarify the genetic structure of the small yellow croaker, Larimichthys polyactis, in the Yellow and East China Seas, especially regarding four provisional populations, (one Korean and three Chinese populations). Based on microsatellite DNA variations, the estimated expected heterozygosity ($H_E$) in each population ranged from 0.776 to 0.947. The microsatellite pairwise $F_{ST}$ estimates showed no significant genetic differentiation between the populations. MtDNA variations also indicated no genetic structure in L. polyactis, but very high variability. The absence of genetic differentiation among and within populations of L. polyactis may either result from the random migration of the adult or the passive dispersal of the eggs and larvae.

Morphological Characteristics and Genetic Diversity Analysis of Cultivated Sancho (Zanthoxylum schinifolium) and Chopi (Zanthoxylum piperitum) in Korea (국내 재배지의 산초(Zanthoxylum schinifolium)와 초피(Zanthoxylum piperitum)의 형태학적 특성과 유전적 다양성)

  • Ryu, Jaihyunk;Choi, Hae-Sik;Lyu, Jae-il;Bae, Chang-Hyu
    • Korean Journal of Plant Resources
    • /
    • v.29 no.5
    • /
    • pp.555-563
    • /
    • 2016
  • The morphological characteristics and genetic relationships among 32 germplasms of Zanthoxylum schinifolium and Zanthoxylum piperitum collected from two farms in Korea were investigated. The traits with the most variability were seed color, leaf size, and spine size. The intraspecific polymorphism of Z. schinifolium and Z. piperitum was 96.5% and 60.3%, respectively. The genetic diversity and Shannon’s information index values ranged from 0.11 to 0.33 and 0.19 to 0.50, with average values of 0.26 and 0.42, respectively. Two ISSR primers (UBC861 and UBC862) were able to distinguish the different species. The genetic similarity matrix (GSM) revealed variability among the accessions ranging from 0.116 to 0.816. The intraspecific GSM for Z. schinifolium and Z. piperitum was 0.177-0.780 and 0.250-0.816, respectively. The GSM findings indicate that Z. schinifolium and Z. piperitum accessions have high genetic diversity and possess germplasms qualifying as good genetic resources for cross breeding. The clustering analysis separated Z. schinifolium and Z. piperitum into independent groups, and all accessions could be classified into three categories. Z. Schinifolium var. nermis belonged to independent groups. Comparison of the clusters based on morphological analysis with those based on ISSR data resulted in an unclear pattern of division among the accessions. The study findings indicate that Z. schinifolium and Z. piperitum accessions have genetic diversity, and ISSR markers were useful for identifying Z. schinifolium and Z. piperitum.

Genetic Improvement for Yield and Yield Related Traits by Introgressive Hybridization in Sweet Corn

  • Nigussie Mandefro;Saleh Ghizan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.2
    • /
    • pp.91-96
    • /
    • 2005
  • Proper choice of source populations contributes to the ultimate success of selection for genetic improvement. The source population should possess the most desirable alleles at as many loci as possible for intra population improvement. Such desirable alleles can be intensified by introgression of exotic germ plasm into locally adapted ones through hybridization followed by selection. The objectives of this study were to determine the mean performance, genetic variability $({\sigma}^2G)$ and heritability of fresh ear yield and other important traits within two sweet corn source populations, $BC1-10{\times}Syn-II$ and BC2-10. One hundred selfed progenies from each of the two source populations were evaluated in a $10\times10$ lattice design, at the Institute of Bioscience (IBS) Farm, University of Putra Malaysia (UPM) following the recommended cultural practices. Significant differences among selfed progenies within $BC1-10{\times}Syn-II$ were observed for all traits, while differences among selfed progenies within BC2-10 were noted for fresh ear yield, ear length, ear diameter, number of kernels per row, ear height, days to tasseling and days to silking. Progenies developed from $BC1-10{\times}Syn-II$ population had higher estimates of ${\sigma}^2G$ than did progenies from BC2-10 population for number of kernel rows per ear, total soluble solids, plant height, days to tasseling and days to silking, showing that selection to improve these traits would be more effective in selfed progenies of $BC1-10{\times}Syn-II$ than that in BC2-10. On the other hand, progenies developed from BC2-10 population had higher estimates of ${\sigma}^2G$ for ear length, ear diameter and ear height, indicating that progenies from this population would have better genetic gain than $BC1-10{\times}Syn-II$. Comparable estimates of genetic variance were found for fresh ear yield, and number of kernels per row, indicating that genetic improvement of the two source populations is expected to produce similar genetic gains for these two traits. Therefore, selfed progenies developed from both source populations could be used to improve the two populations for various traits and thereby develop superior genotypes for immediate use in the production system.

DNA Polymorphism and Assessments of Genetic Relationships in genus Zoysia Based on Simple Sequence Repeat Markers (ISSR에 의한 잔디속 식물의 DNA 다형성과 유전적 관계 평가)

  • Huh, Man Kyu
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.257-262
    • /
    • 2015
  • The genetic variability of four species of the genus Zoysia collected from South Korea was analyzed using an inter-simple sequence repeat (ISSR) marker system. Polymerase chain reactions (PCR) with eight ISSR primers generated 86 amplicons, 76 (87.1%) of which were polymorphisms. The polymorphism information content (PIC) value of the ISSR marker system was 0.848. The percentage of polymorphic loci (Pp) ranged from 41.2% to 44.7%. Nei’s gene diversity (H) ranged from 0.149 to 0.186, with an average overall value of 0.170. The mean of Shannon’s information index (I) value was 0.250. Total genetic diversity values (HT) varied between 0.356 (ISSR-1) and 0.418 (ISSR-16), for an average overall polymorphic loci of 0.345. Interlocus variation in within-species genetic diversity (HS) was low (0.170). On a per-locus basis, the proportion of total genetic variation due to differences among species (GST) was 0.601. This indicated that about 60.1% of the total variation was among species. Thus, about 39.9 of genetic variation was within species. The estimate of gene flow, based on GST, was very low among species of the genus Zoysia (Nm = 0.332). The phylogenic tree showed three distinct groups: Z. macrostachya and Z. tenuifolia clades and other species were formed the separated clusters. In conclusion, the ISSR assay was useful for detecting genetic variation in the genus Zoysia, and its discriminatory power was comparable to that of other genotyping tools.

Genetic diversity evolution in the Mexican Charolais cattle population

  • Rios-Utrera, Angel;Montano-Bermudez, Moises;Vega-Murillo, Vicente Eliezer;Martinez-Velazquez, Guillermo;Baeza-Rodriguez, Juan Jose;Roman-Ponce, Sergio Ivan
    • Animal Bioscience
    • /
    • v.34 no.7
    • /
    • pp.1116-1122
    • /
    • 2021
  • Objective: The aim was to characterize the genetic diversity evolution of the registered Mexican Charolais cattle population by pedigree analysis. Methods: Data consisted of 331,390 pedigree records of animals born from 1934 to 2018. Average complete generation equivalent, generation interval, effective population size (Ne), and effective numbers of founders (fe), ancestors (fa), and founder genomes (Ng) were calculated for seven five-year periods. The inbreeding coefficient was calculated per year of birth, from 1984 to 2018, whereas the gene contribution of the most influential ancestors was calculated for the latter period. Results: Average complete generation equivalent consistently increased across periods, from 4.76, for the first period (1984 through 1988), to 7.86, for the last period (2014 through 2018). The inbreeding coefficient showed a relative steadiness across the last seventeen years, oscillating from 0.0110 to 0.0145. During the last period, the average generation interval for the father-offspring pathways was nearly 1 yr. longer than that of the mother-offspring pathways. The effective population size increased steadily since 1984 (105.0) and until 2013 (237.1), but showed a minor decline from 2013 to 2018 (233.2). The population displayed an increase in the fa since 1984 and until 2008; however, showed a small decrease during the last decade. The effective number of founder genomes increased from 1984 to 2003, but revealed loss of genetic variability during the last fifteen years (from 136.4 to 127.7). The fa:fe ratio suggests that the genetic diversity loss was partially caused by formation of genetic bottlenecks in the pedigree; in addition, the Ng:fa ratio indicates loss of founder alleles due to genetic drift. The most influential ancestor explained 1.8% of the total genetic variability in the progeny born from 2014 to 2018. Conclusion: Inbreeding, Ne, fa, and Ng are rather beyond critical levels; therefore, the current genetic status of the population is not at risk.

Update on Distribution and Genetic Variability of Plum pox virus Strains in Bulgaria

  • Kamenova, Ivanka;Borisova, Anelija
    • The Plant Pathology Journal
    • /
    • v.35 no.3
    • /
    • pp.243-256
    • /
    • 2019
  • Field surveys for Plum pox virus (PPV) infection were conducted in stone fruit orchards all over Bulgaria. In total, 1168 out of 3020 leaf samples from cultivated Prunus spp. and wildly growing P. cerasifera trees reacted positive for PPV in DASI-ELISA with the universal monoclonal antibody (MAb) 5B. Further ELISA analyses showed that 987 and 127 isolates belonged to PPV-M and PPV-D serotypes, respectively. The plum and P. cerasifera showed 82.0% and 50.5% levels of infection, respectively followed by the peach (40.0%) and the apricot (32.0%). Five hundred fifty one PPV isolates were further typed by IC-RT-PCR with PPV-Rec, -M and -D-specific primers, targeting (Cter)NIb-(Nter) CP genome region, as 125 isolates were sequenced. The results revealed the presence of PPV-Rec, PPV-M and PPV-D and mixed infections of these strains. PPV-Rec was the most prevalent strain (49.0%), followed by PPV-M (40.1%), while PPV-D was the less spread strain (8.2%). PPV-Rec was the most common strain in plums, including the eight "old-aged" trees from the region of the first Sharka discovery. PPV-M was the most prevalent strain in peach and apricot. Phylogenetic analyses on (Cter)NIb-(Nter)CP of the isolates were performed. PPV-Rec isolates formed a homogeneous group, while PPV-M isolates split into PPV-Ma and PPV-Mb subgroups. Five separated clades were formed by the analyzed PPV-D isolates. Nucleotide sequences of the partial CP coding region of the analyzed isolates revealed a slightly higher intra-strain genetic variability in PPV-Rec and PPV-M isolates, while that of PPV-D strain isolates was higher from the reported for these strains.

Genetic Variability Comparison of Wild Populations and Cultured Stocks of Flounder Paralichthys olivaceus Based on Microsatellite DNA Markers (넙치, Paralichthys olivaceus 자연 집단과 양식 집단의 유전학적 다양성 비교)

  • Jeong, Dal Sang;Noh, Jae Koo;Myeong, Jeong In;Lee, Jeong Ho;Kim, Hyun Choul;Park, Chul Ji;Min, Byung Hwa;Ha, Dong Soo;Jeon, Chang Young
    • Korean Journal of Ichthyology
    • /
    • v.21 no.4
    • /
    • pp.221-226
    • /
    • 2009
  • Six microsatellite DNA markers were used to investigate the genetic variability between wild populations and cultured stocks of olive flounder Paralichthys olivaceus. The average of observed (Ho) and expected heterozygosity (He) ranged from 0.722 to 0.959, and from 0.735 to 0.937, respectively. There was no distinguishable difference between the wild populations and cultured stocks in terms of the observed and expected heterozygosities. However, number of alleles per locus differed markedly between the two fish groups: 19.7 to 21.8 for the wild populations and 12.0 to 14.7 for the cultured stocks. This result gives important information concerning the production of seedling for the improvement of genetic diversity in this species.

Genetic Variability and Phylogenetic Relationship Among Proton-Beam-Irradiated Strains of Pleurotus ostreatus

  • Kwon, Hye-Jin;Park, Yong-Jin;Yoo, Young-Bok;Park, Soon-Young;Kong, Won-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1041-1044
    • /
    • 2007
  • To assess the effects of a proton beam on oyster mushrooms (Pleurotus ostreatus), the genetic diversity and phylogenetic relationships among strains induced by a proton beam were investigated based on a clustering analysis. According to an AFLP DNA polymorphism analysis, the induced strains were divided into four groups that coincided with the dose. When applying proton-beam radiation, the dissimilarity among the induced strains increased when increasing the dose. When using more than 400 Gy, the genetic dissimilarity of the irradiated strains was 46-58%. Thus, evaluating the induced strains using the AFLP technique was effective in revealing the mutation effect of the proton beam.