• 제목/요약/키워드: genetic testing

검색결과 445건 처리시간 0.031초

Direct-to-consumer genetic testing

  • Kim, Jong-Won
    • Genomics & Informatics
    • /
    • 제17권3호
    • /
    • pp.34.1-34.3
    • /
    • 2019
  • Direct-to-consumer (DTC) genetic testing is a controversial issue although Korean Government is considering to expand DTC genetic testing. Preventing the exaggeration and abusing of DTC genetic testing is an important task considering the early history of DTC genetic testing in Korea. And the DTC genetic testing performance or method has been rarely reported to the scientific and/or medical community and reliability of DTC genetic testing needs to be assessed. Law enforcement needs to improve these issues. Also principle of transparency needs to be applied.

Genetic testing in clinical pediatric practice

  • Yoo, Han Wook
    • Clinical and Experimental Pediatrics
    • /
    • 제53권3호
    • /
    • pp.273-285
    • /
    • 2010
  • Completion of the human genome project has allowed a deeper understanding of molecular pathophysiology and has provided invaluable genomic information for the diagnosis of genetic disorders. Advent of new technologies has lead to an explosion in genetic testing. However, this overwhelming stream of genetic information often misleads physicians and patients into a misguided faith in the power of genetic testing. Moreover, genetic testing raises a number of ethical, legal, and social issues. Diagnostic genetic tests can be divided into three primary but overlapping categories: cytogenetic studies (including routine karyotyping, high-resolution karyotyping, and fluorescent in situ hybridization studies), biochemical tests, and DNA-based diagnostic tests. DNA-based testing has grown rapidly over the past decade and includes preandpostnatal testing for the diagnosis of genetic diseases, testing for carriers of genetic diseases, genetic testing for susceptibility to common non-genetic diseases, and screening for common genetic diseases in a particular population. Theoretically, once a gene's structure, function, and association with a disease are well established, the clinical application of genetic testing should be feasible. However, for routine applications in a clinical setting, such tests must satisfy a number of criteria. These criteria include an acceptable degree of clinical and analytical validity, support of a quality assurance program, possibility of modifying the course of the diagnosed disease with treatment, inclusion of pre-and postnatal genetic counseling, and determination of whether the proposed test satisfies cost-benefit criteria and should replace or complement traditional tests. In the near future, the application of genetic testing to common diseases is expected to expand and will likely be extended to include individual pharmacogenetic assessments.

Clinical Genetic Testing in Children with Kidney Disease

  • Kang, Eungu;Lee, Beom Hee
    • Childhood Kidney Diseases
    • /
    • 제25권1호
    • /
    • pp.14-21
    • /
    • 2021
  • Chronic kidney disease, the presence of structural and functional abnormalities in the kidneys, is associated with a lower quality of life and increased morbidity and mortality in children. Genetic etiologies account for a substantial proportion of pediatric chronic kidney disease. With recent advances in genetic testing techniques, an increasing number of genetic causes of kidney disease continue to be found. Genetic testing is recommended in children with steroid-resistant nephrotic syndrome, congenital malformations of the kidney and urinary tract, cystic disease, or kidney disease with extrarenal manifestations. Diagnostic yields differ according to the category of clinical diagnosis and the choice of test. Here, we review the characteristics of genetic testing modalities and the implications of genetic testing in clinical genetic diagnostics.

Multiple Group Testing Procedures for Analysis of High-Dimensional Genomic Data

  • Ko, Hyoseok;Kim, Kipoong;Sun, Hokeun
    • Genomics & Informatics
    • /
    • 제14권4호
    • /
    • pp.187-195
    • /
    • 2016
  • In genetic association studies with high-dimensional genomic data, multiple group testing procedures are often required in order to identify disease/trait-related genes or genetic regions, where multiple genetic sites or variants are located within the same gene or genetic region. However, statistical testing procedures based on an individual test suffer from multiple testing issues such as the control of family-wise error rate and dependent tests. Moreover, detecting only a few of genes associated with a phenotype outcome among tens of thousands of genes is of main interest in genetic association studies. In this reason regularization procedures, where a phenotype outcome regresses on all genomic markers and then regression coefficients are estimated based on a penalized likelihood, have been considered as a good alternative approach to analysis of high-dimensional genomic data. But, selection performance of regularization procedures has been rarely compared with that of statistical group testing procedures. In this article, we performed extensive simulation studies where commonly used group testing procedures such as principal component analysis, Hotelling's $T^2$ test, and permutation test are compared with group lasso (least absolute selection and shrinkage operator) in terms of true positive selection. Also, we applied all methods considered in simulation studies to identify genes associated with ovarian cancer from over 20,000 genetic sites generated from Illumina Infinium HumanMethylation27K Beadchip. We found a big discrepancy of selected genes between multiple group testing procedures and group lasso.

유전상담의 제도적인 고찰 (Genetic counseling in Korean health care system)

  • 김현주
    • Journal of Genetic Medicine
    • /
    • 제4권1호
    • /
    • pp.1-5
    • /
    • 2007
  • Unprecedented amount of genetic information being generated from the result of Human Genome Project (HGP) and advances in genetic research is already forcing changes in the paradigm of health and disease. The ultimate goal of genetic medicine is to use genetic information and technology to develop new ways of treatment or even prevention of the disease on an individual level for 'personalized medicine'. Genetics is play ing an increasingly important role in the diagnosis, monitoring and management of common multifactorial diseases in addition to rare single-gene disorders. While wide range of genetic testing have provided benefits to patients and family, uncertainties surrounding test interpretation, the current lack of available medical options for the diseases, and risks for discrimination and social stigmatization may remain to be resolved. However an increasing number of genetic tests are becoming commercially available, including direct to consumer genetic testing, yet public is often unaw are of their clinical and social implications. The personal nature of information generated by a genetic test, its power to affect major life decisions and family members, and its potential misuse raise important ethical considerations. Therefore appropriate genetic counseling is needed for patient to be informed with the benefits, limitations and risks of genetic tests, prior to informed consent for the tests. Physician also should be familiar with the legal and ethical issues involved in genetic testing to tell patients how w ell a particular genetic risk factor relates with likelihood of disease, and be able to provide appropriate genetic counseling. Genetic counseling become a mandatory requirement as global standard for many genetic testing such as prenatal diagnosis, presymtomatic DNA diagnostic tests and cancer susceptibility gene test for familial cancer syndrome. In oder to meet the challenge of genetic medicine of 21 century in korean health care system, professional education program and certification board for medical genetics specialist including non-MD genetic counselors should be addressed by medical society and regulatory policy of national health insurance reimbursement for genetic counseling to be in place to promote the implementation of clinical genetic service including genetic counseling for proper genetic testing.

  • PDF

Clinical and Laboratory Features to Consider Genetic Evaluation among Children and Adolescents with Short Stature

  • Seokjin Kang
    • Journal of Interdisciplinary Genomics
    • /
    • 제5권2호
    • /
    • pp.18-23
    • /
    • 2023
  • Conventional evaluation method for identifying the organic cause of short stature has a low detection rate. If an infant who is small for gestational age manifests postnatal growth deterioration, triangular face, relative macrocephaly, and protruding forehead, a genetic testing of IGF2, H19, GRB10, MEST, CDKN1, CUL7, OBSL1, and CCDC9 should be considered to determine the presence of Silver-Russell syndrome and 3-M syndrome. If a short patient with prenatal growth failure also exhibits postnatal growth failure, microcephaly, low IGF-1 levels, sensorineural deafness, or impaired intellectual development, genetic testing of IGF1 and IGFALS should be conducted. Furthermore, genetic testing of GH1, GHRHR, HESX1, SOX3, PROP1, POU1F1, and LHX3 should be considered if patients with isolated growth hormone deficiency have short stature below -3 standard deviation score, barely detectable serum growth hormone concentration, and other deficiencies of anterior pituitary hormone. In short patients with height SDS <-3 and high growth hormone levels, genetic testing should be considered to identify GHR mutations. Lastly, when severe short patients (height z score <-3) exhibit high levels of prolactin and recurrent pulmonary infection, genetic testing should be conducted to identify STAT5B mutations.

Epilepsy syndromes during the first year of life and the usefulness of an epilepsy gene panel

  • Lee, Eun Hye
    • Clinical and Experimental Pediatrics
    • /
    • 제61권4호
    • /
    • pp.101-107
    • /
    • 2018
  • Recent advances in genetics have determined that a number of epilepsy syndromes that occur in the first year of life are associated with genetic etiologies. These syndromes range from benign familial epilepsy syndromes to early-onset epileptic encephalopathies that lead to poor prognoses and severe psychomotor retardation. An early genetic diagnosis can save time and overall cost by reducing the amount of time and resources expended to reach a diagnosis. Furthermore, a genetic diagnosis can provide accurate prognostic information and, in certain cases, enable targeted therapy. Here, several early infantile epilepsy syndromes with strong genetic associations are briefly reviewed, and their genotype-phenotype correlations are summarized. Because the clinical presentations of these disorders frequently overlap and have heterogeneous genetic causes, next-generation sequencing (NGS)-based gene panel testing represents a more powerful diagnostic tool than single gene testing. As genetic information accumulates, genetic testing will likely play an increasingly important role in diagnosing pediatric epilepsy. However, the efforts of clinicians to classify phenotypes in nondiagnosed patients and improve their ability to interpret genetic variants remain important in the NGS era.

Navigating the landscape of clinical genetic testing: insights and challenges in rare disease diagnostics

  • Soo Yeon Kim
    • Childhood Kidney Diseases
    • /
    • 제28권1호
    • /
    • pp.8-15
    • /
    • 2024
  • With the rapid evolution of diagnostic tools, particularly next-generation sequencing, the identification of genetic diseases, predominantly those with pediatric-onset, has significantly advanced. However, this progress presents challenges that span from selecting appropriate tests to the final interpretation of results. This review examines various genetic testing methodologies, each with specific indications and characteristics, emphasizing the importance of selecting the appropriate genetic test in clinical practice, taking into account factors like detection range, cost, turnaround time, and specificity of the clinical diagnosis. Interpretation of variants has become more challenging, often requiring further validation and significant resource allocation. Laboratories primarily classify variants based on the American College of Medical Genetics and Genomics and the Association for Clinical Genomic Science guidelines, however, this process has limitations. This review underscores the critical role of clinicians in matching patient phenotypes with reported genes/variants and considering additional factors such as variable expressivity, disease pleiotropy, and incomplete penetrance. These considerations should be aligned with specific gene-disease characteristics and segregation results based on an extended pedigree. In conclusion, this review aims to enhance understanding of the complexities of clinical genetic testing, advocating for a multidisciplinary approach to ensure accurate diagnosis and effective management of rare genetic diseases.

Oral Bacterial Genetic Testing using Big Data

  • Hee-Sun, Woo
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권3호
    • /
    • pp.111-117
    • /
    • 2023
  • 구강은 전신건강을 들여다 볼 수 있는 창문이자 많은 유해균이 들어오는 관문이기도 하다. 우리 몸에 있어서 아주 중요한 부분이다. 유전자 검사는 구강 내 세균을 검사하여 빅 데이터 AI 알고리즘 분석을 통해 우리 몸에 발생할 수 있는 전신질환까지 예측하여 예방 관리를 체계적으로 할 수 있다는 가장 큰 장점이 있다. 이에 본 논문은 연구자 가족이 직접 유전자 검사를 수행하여 결과를 도출해 보고자 한다. 본 연구는 2022년 11월 연구자 가족 4명이 서울시에 소재한 예방치과진료실 J치과의원에서 치과의사 1명, 치과위생사 1명에게 사전설명을 듣고 동의서 작성 후 구강검사와 유전자 검사를 수행하였다. 성인은 Dr.***으로 중·초등학생은 He***** 제품으로 유전자 검사를 하였다. 현재 우리나라에서 진행하고 있는 유전자 검사는 대상자가 피를 뽑지 않고 비교적 쉽게 접근할 수 있는 장점도 있지만, 시간, 비용 등 한계점도 있다. 그럼에도 불구하고 구강 내 미생물을 통해 전신질환을 예측할 수 있다는 점에서는 높이 평가할 부분이라고 생각한다.

유전성 대사 질환의 분자 유전학적 진단 (Molecular Genetic Diagnosis of Inherited Metabolic Diseases)

  • 기창석;이수연;김종원
    • 대한유전성대사질환학회지
    • /
    • 제5권1호
    • /
    • pp.108-115
    • /
    • 2005
  • Inherited metabolic diseases (IMD) comprise a large class of genetic diseases involving disorders of metabolism. The majorities are due to defects of single genes that code for enzymes that facilitate conversion of various substances into others. Because of the multiplicity of conditions, many different diagnostic tests are used for screening of IMD. Molecular genetic diagnosis is the detection of pathogenic mutations in DNA and/or RNA samples and is becoming a much more common practice in medicine today. The purpose of molecular genetic testing in IMD includes diagnostic testing, pre-symptomatic testing, carrier screening, prenatal diagnosis, preimplantation testing, and population screening. However, because of the complexity, difficulty in interpreting the result, and the ethical considerations, an understanding of technical, conceptual, and practical aspects of molecular genetic diagnosis is mandatory.

  • PDF