• Title/Summary/Keyword: genetic susceptibility

Search Result 489, Processing Time 0.027 seconds

Update of genetic susceptibility in patients with Kawasaki disease

  • Yoon, Kyung Lim
    • Clinical and Experimental Pediatrics
    • /
    • v.58 no.3
    • /
    • pp.84-88
    • /
    • 2015
  • Kawasaki disease (KD) is an acute systemic vasculitis that predominantly affects children, and can result in coronary artery lesions (CAL). A patient with KD who is resistant to treatment with intravenous immunoglobulin (IVIG) has a higher risk of developing CAL. Incomplete KD has increased in prevalence in recent years, and is another risk factor for the development of CAL. Although the pathogenesis of KD remains unclear, there has been increasing evidence for the role of genetic susceptibility to the disease since it was discovered in 1967. We retrospectively reviewed previous genetic research for known susceptibility genes in the pathogenesis of KD, IVIG resistance, and the development of CAL. This review revealed numerous potential susceptibility genes including genetic polymorphisms of ITPKC, CASP3, the transforming growth factor-${\beta}$ signaling pathway, B lymphoid tyrosine kinase, FCGR2A, KCNN2, and other genes, an imbalance of Th17/Treg, and a range of suggested future treatment options. The results of genetic research may improve our understanding of the pathogenesis of KD, and aid in the discovery of new treatment modalities for high-risk patients with KD.

Type 1 diabetes genetic susceptibility markers and their functional implications

  • Park, Yongsoo
    • Journal of Genetic Medicine
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by selective destruction of pancreatic ${\beta}$-cells resulting in insulin deficiency. The genetic determinants of T1D susceptibility have been linked to several loci, in particular to the human leukocyte antigen (HLA) region, which accounts for 50% of the genetic risk of developing T1D. Multiple genes in the HLA region, which are in strong linkage disequilibrium, are thought to be involved. Another important locus, with a smaller effect on genetic predisposition to T1D, is the insulin gene. The advent of numerous single nucleotide polymorphism markers and genome screening has enabled the identification of dozens of new T1D susceptibility loci. Some of them appear to predispose to T1D independently of the HLA and may be important in families with T1D who lack strong HLA susceptibility. Other loci may interact with each other to cause susceptibility. The autoimmune response against ${\beta}$-cells can also be triggered by environmental factors in the presence of a predisposing genetic background. Deciphering the environmental and genetic factors involved should help to understand the origin of T1D and aid in the design of individualized prevention programs.

Association of the CD226 Genetic Polymorphisms with Risk of Tuberculosis

  • Jin, Hyun-Seok;Park, Sangjung
    • Biomedical Science Letters
    • /
    • v.23 no.2
    • /
    • pp.89-95
    • /
    • 2017
  • Tuberculosis (TB), mainly disseminated by infection of the respiratory tract, remains an unsolved community health problem by Mycobacterium tuberculosis (MTB). However, because of the different susceptibility to MTB, people infected with MTB do not all develop TB. These differences of disease arise from individual genetic susceptibility as well as the property of the microorganisms itself. CD226, one of the genetic factors that influences TB, interact with its ligand PVR and ITGB2. It is induced various cellular responses that contribute multiple innate and adaptive responses. In a previous study, CD226 enhanced immune efficacy induced by Ag85A DNA vaccination that is secreted protein by MTB. The aim of this study was to investigate the association between six genetic polymorphisms of CD226 gene and TB status with Korean population. Our results show that two SNPs of CD226 were identified to associate with tuberculosis. The highest significant SNP was rs17081766 (OR=0.70, CI: 0.54~0.90, $P=5.4{\times}10^{-3}$). According to this study, polymorphisms of CD226 gene affect the outbreak of TB in MTB-infected patients. It is suggested that polymorphism of other genes also associated with immune responses results in susceptibility to TB. The results from this study suggest that not only the characteristics of the microorganism itself but also the genetic background of the individual may affect progression of TB in MTB-infected patients.

Association Between the c.3751G>A Genetic Variant of MDR1 and Hepatocellular Carcinoma Risk in a Chinese Han Population

  • Li, Xiao-Fei;He, Hua-Bin;Zhu, Yan-Shuang;He, Jin-Ke;Ye, Wei-Wei;Chen, Yong-Xin;Lou, Lian-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5361-5365
    • /
    • 2013
  • The objective of this study was to evaluate the influence of a genetic variant in the multidrug resistance 1 gene (MDR1) on hepatocellular carcinoma (HCC) risk. This case-control study was conducted in a Chinese population of 645 HCC cases and 658 cancer-free controls. The genotype of the c.3751G>A genetic variant in the MDR1 gene was investigated by created restriction site-polymerase chain reaction (CRS-PCR) and DNA sequencing methods. Our data demonstrated significantly differences detected in the allelic and genotypic frequencies between HCC cases and those of cancer-free controls. Association analyses indicated that there were statistically increased risk of HCC in the homozygote comparison (AA versus (vs.) GG: OR=2.22, 95% CI 1.51-3.27, ${\chi}^2$=16.90, P<0.001), dominant model (AA/GA vs. GG: OR=1.25, 95% CI 1.00-1.55, ${\chi}^2$=3.98, P=0.046), recessive model (AA vs. GA/GG: OR=2.14, 95% CI 1.47-3.09, ${\chi}^2$=16.68, P<0.001) and allele comparison (A vs. G: OR=1.33, 95% CI 1.13-1.57, ${\chi}^2$=11.66, P=0.001). The allele-A and genotype-AA may contribute to HCC susceptibility. These preliminary findings suggest that the c.3751G>A genetic variant in the MDR1 gene is potentially related to HCC susceptibility in a Chinese Han population, and might be used as a molecular marker for evaluating HCC susceptibility.

GENETIC POLYMORPHISMS OF THE GLUTATHIONE S-TRANSFERASE AND CYP1A1 GENES IN KOREAN ORAL SQUAMOUS CELL CARCINOMA (한국인 구강 편평세포암에서 Glutathione S-transferase와 CYP1A1 유전자의 다형성)

  • Cha, In-Ho;Kwon, Jong-Jin;Park, Kwang-Kyun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.5
    • /
    • pp.364-371
    • /
    • 2002
  • Many chemical compopunds are converted into reactive electrophilic metabolites by the oxidative(Phase I) enzymes, which are mainly cytochrome P-450 enzyme(CYPs). Phase II conjugating enzymes, such as glutathione S-transferase(GST), usually act as inactivation of enzymes. Genetic polymorphisms have been found to be associated with increased susceptibility to cancer of the lung, bladder, breast and colorectal. Many of the polymorphic genes of carcinogen metabolism show considerably different type of cancer among different ethnic groups as well as individuals within the same group. The aim of this study is (1) to establish the frequencies of genetic polymorphisms of GSTM1 and CYP1A1 in Korean oral squamous cell carcinoma(SCC), (2) to associate oral SCC with the risk of these genetic polymorphisms. The genetic polymorphisms of the GSTM1 and the CYP1A1 genes among 50 Korean oral SCC were analyzed using polymerase chain reaction(PCR). The results suggest that the homozygote and the mutant type of CYP1A1 MspI polymorphisms may be associated with genetic susceptibility to oral SCC in Korean. A combination of the GSTM1 null type with the homozygote(m1/m1), and the mutant(m2/m2) type of CYP1A1 MspI polymorphisms showed a relatively high risk of oral SCC in Korean. In the smoking group, the GSTM1 wild genotype may be the high risk factor of oral SCC in Korean. These data coincide with the hypothesis which states that different susceptibility to cancer of genetic polymorphisms exist among different ethnic group and different types of human cancer.

Association study between OCTN1 functional haplotypes and Crohn's disease in a Korean population

  • Jung, Eun Suk;Park, Hyo Jin;Kong, Kyoung Ae;Choi, Ji Ha;Cheon, Jae Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.11-17
    • /
    • 2017
  • Crohn's disease (CD) is a chronic inflammatory bowel disease with multifactorial causes including environmental and genetic factors. Several studies have demonstrated that the organic cation/carnitine transporter 1 (OCTN1) non-synonymous variant L503F is associated with susceptibility to CD. However, it was reported that L503F is absent in Asian populations. Previously, we identified and functionally characterized genetic variants of the OCTN1 promoter region in Koreans. In that study, four variants demonstrated significant changes in promoter activity. In the present study, we determined whether four functional variants of the OCTN1 promoter play a role in the susceptibility to or clinical course of CD in Koreans. To examine it, the frequencies of the four variants of the OCTN1 promoter were determined by genotyping using DNA samples from 194 patients with CD and 287 healthy controls. Then, associations between genetic variants and the susceptibility to CD or clinical course of CD were evaluated. We found that susceptibility to CD was not associated with OCTN1 functional promoter variants or haplotypes showing altered promoter activities in in vitro assays. However, OCTN1 functional promoter haplotypes showing decreased promoter activities were significantly associated with a penetrating behavior in CD patients (HR=2.428, p=0.009). Our results suggest that the OCTN1 functional promoter haplotypes can influence the CD phenotype, although these might not be associated with susceptibility to this disease.

Current Status of Genomic Epidemiology Reseach (유전체 역학연구의 동향)

  • Lee, Kyoung-Mu;Kang, Dae-Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • v.36 no.3
    • /
    • pp.213-222
    • /
    • 2003
  • Genomic epidemiology is defined as 'an evoking field of inquiring that uses the systematic application of epidemiologic methods are approaches in population-based studies of the impact of human genetic variation on health and disease (Khoury, 1998)'. Most human diseases are caused by the intricate interaction among environmental exposures and genetic susceptibility factors. Susceptibility genes involved in disease pathogenesis are categorized into two groups: high penetrance genes (i.e., BRAC1, RB, etc.) and lour penetranoe genes (i.e., GSTs, Cyps, XRCC1, ets.), and low penetrance susceptibility genes has the higher priority for epidemiological research due to high population attributable risk. In this paper, the summarized results of the association study between single nucleotide polymorphisms (SNPs) and breast cancer in Korea were introduced and the international trends of genomic epidemiology research were reviewed with an emphasis on internee-based case-control and cohort consortium.

Understanding Disease Susceptibility through Population Genomics

  • Han, Seonggyun;Lee, Junnam;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • v.10 no.4
    • /
    • pp.234-238
    • /
    • 2012
  • Genetic epidemiology studies have established that the natural variation of gene expression profiles is heritable and has genetic bases. A number of proximal and remote DNA variations, known as expression quantitative trait loci (eQTLs), that are associated with the expression phenotypes have been identified, first in Epstein-Barr virus-transformed lymphoblastoid cell lines and later expanded to other cell and tissue types. Integration of the eQTL information and the network analysis of transcription modules may lead to a better understanding of gene expression regulation. As these network modules have relevance to biological or disease pathways, these findings may be useful in predicting disease susceptibility.