• Title/Summary/Keyword: genetic structure

Search Result 1,605, Processing Time 0.036 seconds

Analysis of Genetic Diversity and Population Structure of Wild Strains and Cultivars Using Genomic SSR Markers in Lentinula edodes

  • Lee, Hwa-Yong;Moon, Suyun;Ro, Hyeon-Su;Chung, Jong-Wook;Ryu, Hojin
    • Mycobiology
    • /
    • v.48 no.2
    • /
    • pp.115-121
    • /
    • 2020
  • In this study, the genetic diversity and the population structure of 77 wild strains and 23 cultivars of Lentinula edodes from Korea were analyzed using 20 genomic SSRs, and their genetic relationship was investigated. The tested strains of L. edodes were divided into three sub-groups consisting of only wild strains, mainly wild strains and several cultivars, and mainly cultivars and several wild strains by distance-based analysis. Using model-based analysis, L. edodes strains were divided into two subpopulations; the first one consisting of only wild strains and the second one with mainly cultivars and several wild strains. Moreover, AMOVA analysis revealed that the genetic variation in the cultivars was higher than that in the wild strains. The expected and observed heterozygosity and values indicating the polymorphic information content of L. edodes cultivars from Korea were also higher than that of the wild strains. Based on these results, we presume that the cultivars in Korea have developed by using numerous strains from other countries. In conclusion, the usage of wild strains for the development of new cultivars could improve the adaptability of L. edodes to biotic and abiotic stress.

Optimal Design of Machine Tool Structure for Static Loading Using a Genetic Algorithm (유전자 알고리듬을 이용한 공작기계 구조물의 정역학적 최적설계)

  • Park, Jong-Kweon;Seong, Hwal-Gyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.66-73
    • /
    • 1997
  • In many optimal methods for the structural design, the structural analysis is performed with the given design parameters. Then the design sensitivity is calculated based on its structural anaysis results. There-after, the design parameters are changed iteratively. But genetic algorithm is a optimal searching technique which is not depend on design sensitivity. This method uses for many design para- meter groups which are generated by a designer. The generated design parameter groups are become initial population, and then the fitness of the all design parameters are calculated. According to the fitness of each parameter, the design parameters are optimized through the calculation of reproduction process, degradation and interchange, and mutation. Those are the basic operation of the genetic algorithm. The changing process of population is called a generation. The basic calculation process of genetic algorithm is repeatly accepted to every generation. Then the fitness value of the element of a generation becomes maximum. Therefore, the design parameters converge to the optimal. In this study, the optimal design pro- cess of a machine tool structure for static loading is presented to determine the optimal base supporting points and structure thickness using a genetic algorithm.

  • PDF

Genetic diversity and population structure of Atractylodes japonica $K_{OIDZ}.$ in Korea (한국내 삽주의 유전적 다양성과 집단구조)

  • Huh, Man-Kyu;Sung, Jung-Sook;Park, Chun-Geon;Park, Hee-Woon;Seong, Nak-Sul;Moon, Sung-Gi;Huh, Hong-Wook
    • Korean Journal of Medicinal Crop Science
    • /
    • v.10 no.1
    • /
    • pp.5-11
    • /
    • 2002
  • The study of genetic diversity was carried out in Atractylodes japonica $K_{OIDZ}$. Although this species has been regarded as medically important one, there is no report on population structure in Korea. Starch gel electrophoresis was used to investigate the allozyme variation and genetic structure of eight Korean populations of this species. Of the 15 genetic loci surveyed, nine (60.0%) was polymorphic in at least one population. Genetic diversity was high at the species level $(H_{es}=0.144)$, whereas, that of the population level was relatively low $(H_{ep}=0.128)$. Nearly 87% of the total genetic diversity in A. japonica was apportioned within populations. The sexual reproduction, high fecundity, and perennials are proposed as possible factors contributing to high genetic diversity. The indirect estimated of gene flow based on Gst was 1.69.

Genetic diversity analysis of fourteen geese breeds based on microsatellite genotyping technique

  • Moniem, Hebatallah Abdel;Zong, Yang Yao;Abdallah, Alwasella;Chen, Guo-hong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1664-1672
    • /
    • 2019
  • Objective: This study aimed to measure genetic diversity and to determine the relationships among fourteen goose breeds. Methods: Microsatellite markers were isolated from the genomic DNA of geese based on previous literature. The DNA segments, including short tandem repeats, were tested for their diversity among fourteen populations of geese. The diversity was tested on both breeds and loci level and by mean of unweighted pair group method with arithmetic mean and structure program, phylogenetic tree and population structure were tested. Results: A total of 108 distinct alleles (1%) were observed across the fourteen breeds, with 36 out of the 108 alleles (33.2%) being unique to only one breed. Genetic parameters were measured per the 14 breeds and the 9 loci. Medium to high heterozygosity was reported with high effective numbers of alleles (Ne). Polymorphic information contents (PIC) of the screened loci was found to be highly polymorphic for eleven breeds; while 3 breeds were reported moderately polymorphic. Breeding coefficient ($F_{IS}$) ranged from -0.033 to 0.358, and the pair wise genetic differentiation ($F_{ST}$) ranged from 0.01 to 0.36 across the fourteen breeds; for the 9 loci observed and expected heterozygosity, and Ne were same as the breeds parameters, PIC of the screened loci reported 6 loci highly polymorphic and 3 loci to be medium polymorphic, and $F_{IS}$ ranged from -0.113 to 0.368. In addition, genetic distance estimate revealed a close genetic distance between Canada goose and Hortobagy goose breeds by 0.04, and the highest distance was between Taihu goose and Graylag goose (anser anser) breed by 0.54. Conclusion: Cluster analyses were made, and they revealed that goose breeds had hybridized frequently, resulting in a loss of genetic distinctiveness for some breeds.

Comparison and Validation of Genetic Diversity and Population Structure Using Monomorphic SNP Data of the Korean Native Black Goat and Crossbred Goat (재래흑염소와 교잡종 염소의 Monomorphic SNP 분석을 통한 유전적 다양성과 집단구조의 비교 및 검증)

  • Kim, Kwan-Woo;Lee, Jinwook;Lee, Eun-Do;Lee, Sung-Soo;Choi, You-Lim;Lim, Hyun-Tae;Kim, Yousam;Lee, Sang-Hoon
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.1007-1011
    • /
    • 2020
  • This study was conducted to analyze the genetic diversity and relationships that discriminate between Korean native black goat populations (Dangjin, Jangsu, Tongyoung, and Gyeongsang National University strains) and crossbred goats. Monomorphic single nucleotide polymorphisms (SNPs) in each strain were collected, and 133 common SNPs were selected for analysis. These 133 monomorphic SNPs showed differences in the genetic structure of the Korean native black goat and crossbred goats, and results from the principal component analysis (PCA) showed that the two can be clearly separated. Furthermore, analysis of the validation population comprising 70 individuals (Korean native black goats, n = 24; crossbred goats, n = 46) with the reference population showed that Korean native black goat strains and the reference population have the same genetic structure, and the crossbred goats shared only part of the genetic structure with the reference population. The result of the PCA analysis showed that the Korean native black goat strains form one population, whereas the foreign strains form another population which is more widely dispersed than the Korean native black goat strains. Thus, the results from this study can be used as baseline data for the conservation of genetic resources of Korean native black goat communities through utilization of monomorphic SNPs and for the introduction of exotic species for further improvement in genetic diversity. This study can also help reduce unnecessary inbreeding and gene flow between native strains.

The Homeobox and Genetic Disease: Structure and Dynamics of Wild Type and Mutant Homeodomain Proteins

  • Ferretti, James A.
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • Structural and physical properties of type wild type and various selected mutants of the vnd/NK-2 homeodomain, the protein product of the homeobox, and the implication in genetic disease are reviewed. The structure, dynamics and thermodynamics have been Investigated by NMR and by calorimetry. The interactions responsible for the nucleotide sequence-specific binding of the homeodomain to its consensus DNA binding site have been identified. There is a strong correlation between significant structural alterations within the homeodomain or its DNA complex and the appearance of genetic disease. Mutations in positions known to be important in genetic disease have been examined carefully For example, mutation of position 52 of vnd/NK-2 results in a significant structural modification and mutation of position 54 alters the DNA binding specificity and amity The $^{15}N$ relaxation behavior and heteronuclear Overhauser effect data was used to characterize and describe the protein backbone dynamics. These studies were carried out on the wild type and the double mutant proteins both in the free and in the DNA bound states. Finally, the thermodynamic properties associated with DNA binding are described for the vnd/NK-2 homeodomain. These thermodynamic measurements reinforce the hypothesis that water structure around a protein and around DNA significantly contribute to the protein-DNA binding behavior. The results, taken together, demonstrate that structure and dynamic studies of proteins combined with thermodynamic measurements provide a significantly more complete picture of the solution behavior than the individual studies.

  • PDF

Phylogeography and Population Genetic Structure of Amur Grayling Thymallus grubii in the Amur Basin

  • Ma, Bo;Lui, Tingting;Zhang, Ying;Chen, Jinping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.7
    • /
    • pp.935-944
    • /
    • 2012
  • Amur grayling, Thymallus grubii, is an important economic cold freshwater fish originally found in the Amur basin. Currently, suffering from loss of habitat and shrinking population size, T. grubii is restricted to the mountain river branches of the Amur basin. In order to assess the genetic diversity, population genetic structure and infer the evolutionary history within the species, we analysised the whole mitochondrial DNA control region (CR) of 95 individuals from 10 rivers in China, as well as 12 individuals from Ingoda/Onon and Bureya River throughout its distribution area. A total of 64 variable sites were observed and 45 haplotypes were identified excluding sites with gaps/missing data. Phylogenetic analysis was able to confidently predict two subclade topologies well supported by maximum-parsimony and Bayesian methods. However, basal branching patterns cannot be unambiguously estimated. Haplotypes from the mitochondrial clades displayed local homogeneity, implying a strong population structure within T. grubii. Analysis of molecular variance detected significant differences among the different geographical rivers, suggesting that T. grubii in each river should be managed and conserved separately.

Genetic Diversity and Population Structure of Korean Soybean Landrace [Glycine max(L.) Merr.]

  • Cho, Gyu-Taek;Lee, Jeong-Ran;Moon, Jung-Kyung;Yoon, Mun-Sup;Baek, Hyung-Jin;Kang, Jung-Hoon;Kim, Tae-San;Paek, Nam-Chon
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.83-90
    • /
    • 2008
  • Two hundred and sixty Korean soybean landrace accessions were analyzed for polymorphism at 92 simple sequence repeat(SSR) loci. The 995 identified alleles served as raw data for estimating genetic diversity and population structure. The number of alleles at a locus ranged from three to 27 with a mean of 10.4 alleles per locus. $F_{ST}$ values estimated by analysis of molecular variance(AMOVA) using SSR data set were 0.018, 0.027, and 0.016 for usage, collection site and maturity groups, respectively, indicating little genetic differentiation. The model-based clustering analysis placed the accessions into three clusters(K=3) with 0.0503 of $F_{ST}$, indicating moderate genetic differentiation. Duncan's Multiple Range Test at K = 3 on the basis of 18 quantitative traits revealed that one cluster was mainly differentiated from the other two clusters by seed related traits and the other two clusters were differentiated from each other by biochemical traits. Genetic structure of Korean soybean landraces was differentiated by model-based clustering and supported by their phenotypic traits in part. This preliminary study could be the first step towards more efficient germplasm management and utilization of soybean landraces and helpful in association studies between genotypic and phenotypic traits in Korean soybean landraces.

  • PDF

Genetic diversity and population structure of mongolian wheat based on SSR markers

  • Ya, Narantsetseg;Raveendar, Sebastin;Bayarsukh, N;Ya, Myagmarsuren;Lee, Jung-Ro;Lee, Kyung-Jun;Shin, Myoung-Jae;Cho, Yang-Hee;Ma, Kyung-Ho;Lee, Gi-An
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.82-82
    • /
    • 2017
  • The production of spring wheat, the major crop in Mongolia, is accounting for 98% of the cultivated area. Collection, conservation and utilization of wheat germplasm resources play an important role in wheat breeding and production in Mongolia. Understanding genetic variability in the existing genebank accessions is important for collection and conservation of wheat germplasms. To determine the genetic diversity and population structure among a representative collection of Mongolian local wheat cultivars and lines, 200 wheat accessions were analyzed with 15 SSR markers distributed throughout the wheat genome. A total of 85 alleles were detected, with 3 to 5 alleles per locus and a mean genetic diversity value of 5.66. The average genetic diversity index was 0.68, with values ranging from 0.37 to 0.80. The 200 Mongolian wheat accessions were divided into two subgroups based on STRUCTURE, un-rooted NJ cluster and principal coordinate analyses. The results from this study will provide important information for future wheat germplasm conservation and improvement programs with Mongolian genebank.

  • PDF

Genome-wide Single Nucleotide Polymorphism Analyses Reveal Genetic Diversity and Structure of Wild and Domestic Cattle in Bangladesh

  • Uzzaman, Md. Rasel;Edea, Zewdu;Bhuiyan, Md. Shamsul Alam;Walker, Jeremy;Bhuiyan, A.K.F.H.;Kim, Kwan-Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1381-1386
    • /
    • 2014
  • In spite of variation in coat color, size, and production traits among indigenous Bangladeshi cattle populations, genetic differences among most of the populations have not been investigated or exploited. In this study, we used a high-density bovine single nucleotide polymorphism (SNP) 80K Bead Chip derived from Bos indicus breeds to assess genetic diversity and population structure of 2 Bangladeshi zebu cattle populations (red Chittagong, n = 28 and non-descript deshi, n = 28) and a semi-domesticated population (gayal, n = 17). Overall, 95% and 58% of the total SNPs (69,804) showed polymorphisms in the zebu and gayal populations, respectively. Similarly, the average minor allele frequency value was as high 0.29 in zebu and as low as 0.09 in gayal. The mean expected heterozygosity varied from $0.42{\pm}0.14$ in zebu to $0.148{\pm}0.14$ in gayal with significant heterozygosity deficiency of 0.06 ($F_{IS}$) in the latter. Coancestry estimations revealed that the two zebu populations are weakly differentiated, with over 99% of the total genetic variation retained within populations and less than 1% accounted for between populations. Conversely, strong genetic differentiation ($F_{ST}=0.33$) was observed between zebu and gayal populations. Results of population structure and principal component analyses suggest that gayal is distinct from Bos indicus and that the two zebu populations were weakly structured. This study provides basic information about the genetic diversity and structure of Bangladeshi cattle and the semi-domesticated gayal population that can be used for future appraisal of breed utilization and management strategies.