Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.11.1007

Comparison and Validation of Genetic Diversity and Population Structure Using Monomorphic SNP Data of the Korean Native Black Goat and Crossbred Goat  

Kim, Kwan-Woo (Animal Genetics Resources Research Center, National Institute of Animal Science, RDA)
Lee, Jinwook (Animal Genetics Resources Research Center, National Institute of Animal Science, RDA)
Lee, Eun-Do (Animal Genetics Resources Research Center, National Institute of Animal Science, RDA)
Lee, Sung-Soo (Animal Genetics Resources Research Center, National Institute of Animal Science, RDA)
Choi, You-Lim (Animal Genetics & Breeding Division, National Institute of Animal Science, RDA)
Lim, Hyun-Tae (Department of animal science, Gyeongsang National University)
Kim, Yousam (TNT Research Co., Ltd.)
Lee, Sang-Hoon (Animal Genetics Resources Research Center, National Institute of Animal Science, RDA)
Publication Information
Journal of Life Science / v.30, no.11, 2020 , pp. 1007-1011 More about this Journal
Abstract
This study was conducted to analyze the genetic diversity and relationships that discriminate between Korean native black goat populations (Dangjin, Jangsu, Tongyoung, and Gyeongsang National University strains) and crossbred goats. Monomorphic single nucleotide polymorphisms (SNPs) in each strain were collected, and 133 common SNPs were selected for analysis. These 133 monomorphic SNPs showed differences in the genetic structure of the Korean native black goat and crossbred goats, and results from the principal component analysis (PCA) showed that the two can be clearly separated. Furthermore, analysis of the validation population comprising 70 individuals (Korean native black goats, n = 24; crossbred goats, n = 46) with the reference population showed that Korean native black goat strains and the reference population have the same genetic structure, and the crossbred goats shared only part of the genetic structure with the reference population. The result of the PCA analysis showed that the Korean native black goat strains form one population, whereas the foreign strains form another population which is more widely dispersed than the Korean native black goat strains. Thus, the results from this study can be used as baseline data for the conservation of genetic resources of Korean native black goat communities through utilization of monomorphic SNPs and for the introduction of exotic species for further improvement in genetic diversity. This study can also help reduce unnecessary inbreeding and gene flow between native strains.
Keywords
Genetic diversity; genetic structure; goat; monomorphic SNP;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Alexander, D. H., Novembre, J. and Lange, K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655-1664.   DOI
2 Berihulay H., Li, Y., Liu, X., Gebreselassie G., Islam, R. and Liu, W. 2019. Genetic diversity and population structure in multiple Chinese goat populations using a SNP panel. Anim. Genet. 50, 242-249.   DOI
3 Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M. and Lee, J. J. 2015. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScienc 4, 7.   DOI
4 Chung, E. R. 2002. Identification of Korean native goat meat using amplified fragment length polymorphism (AFLP) DNA markers. Kor. Food Sci. Anim. Resour. 22, 301-309.
5 FAO-Faoestat. 2017. Food and Agriculture Organization of the United Nations. Available from: http://www.fao.org/faostat/en/#data. [Accessed: October 09, 2017]
6 Grasso, A. N., Goldberg, V., Navajas, E. A., Iriarte, W., Gimeno, D., Aguilar, I., Medrano, J. F., Rincon, G. and Ciappesoni, G. 2014. Genomic variation and population structure detected by single nucleotide polymorphism arrays in Corriedale, Merino and Creole sheep. Genet. Mol. Biol. 37, 389-395.   DOI
7 Kijas, J. W., Lenstra, J. A., Hayes, B., Boitard, S., Neto, L. R. P., San Cristobal, M., Servin, B., Mcculloch, R., Whan, V. and Gietzen, K. 2012. Genome-wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 10, E1001258.   DOI
8 Kim, J. H., Cho, C. Y., Choi, S. B., Cho, Y. M., Yeon, S. H. and Yang, B. S. 2011. mtDNA diversity and phylogenetic analysis of Korean native goats. J. Life Sci. 21, 1329-1335.   DOI
9 Lee, S. H., Lee, J., Jeon, D., Lee, S. S., Kim, S., Kim, K. W., 2019. Morphological characteristics and growth performance of Korean native black goats. J. Korea Acad. Industr. Coop. Soc. 20, 149-155.
10 Manunza, A., Noce, A., Serradilla, J. M., Goyache, F., Martinez, A. and Capote, J. 2016. A genome-wide perspective about the diversity and demographic history of seven Spanish goat breeds. Genet. Sel. Evol. 2016, 48-52. pmid:27455838
11 Onzima, R. B., Upadhyay, M. R., Mukiibi, R., Kanis, E., Groenen, M. A. M. and Crooijmans, R. 2018. Genome-wide population structure and admixture analysis reveals weak differentiation among Ugandan goat breeds. Anim. Genet. 49, 59-70.   DOI
12 Park, B. K., Kim, Y. S., Seong, J. and Kong, H. S. 2019. Analysis of genetic diversity and relationships of Korean native black goat using microsatellite markers. J. Anim. Reprod. Biotechnol. 34, 183-189.   DOI
13 Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M., Bender, D., Maller, J., Sklar, P., de Bakker, P., Daly, M. and Sham, P. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559-575.   DOI
14 Shrestha, J. N. B. and Fahmy M. H. 2005. Breeding goats for meat production: A review. 1. Genetics resources, management and breed evaluation. Small Rumin. Res. 58, 93-106.   DOI
15 Suh, S., Cho, C. Y., Byun, M. J, Choi, S. B., Kim, Y. S. and Kim, M. J. 2014. Establishment of a microsatellite marker set for individual identification in goat. J. Agric. Life Sci. 48, 157-164.   DOI
16 Kang, M. H. 1967. Studies on the origin of Korean native goat. Kor. J. Anim. Sci. 9, 5-10.