This paper presents a genetic programming based evolutionary strategy for on-line adaptive learnable evolvable hardware. genetic programming can be useful control method for evolvable hardware for its unique tree structured chromosome. However it is difficult to represent tree structured chromosome on hardware, and it is difficult to use crossover operator on hardware. Therefore, genetic programming is not so popular as genetic algorithms in evolvable hardware community in spite of its possible strength. We propose a chromosome representation methods and a hardware implementation method that can be helpful to this situation. Our method uses context switchable identical block structure to implement genetic tree on evolvable hardware. We composed an evolutionary strategy (or evolvable hardware by combining proposed method with other's striking research results. Proposed method is applied to the autonomous mobile robots cooperation problem to verify its usefulness.
This study suggests a general paradigm enhancing genetic mutability. Mutability among heterogeneous members in a genetic population has been a major problem in application of genetic programming to diverse business problems. This suggested paradigm is implemented to developing new methods from existing methods. Within the evolutionary approach taken to designing new methods, a general representation scheme of the genetic programming framework, called a kernel, is introduced. The kernel is derived from the literature of algorithms and heuristics for combinatorial optimization problems. The commonality and differences among these methods have been identified and again combined by following the genetic inheritance merging them. The kernel was tested for selected methods in combinatorial optimization. It not only duplicates the methods in the literature, it also confirms that each of the possible solutions from the genetic mutation is in a valid form, a running program. This evolutionary method suggests diverse hybrid methods in the form of complete programs through evolutionary processes. It finally summarizes its findings from genetic simulation with insight.
3개 이상의 DNA 혹은 단백질의 염기서열을 정렬하는 복수 염기서열 정렬(multiple sequence alignment)방법은 염기서열들 사이의 진화관계, gene regulation, 단백질의 구조와 기능에 관한 연구에 필수적인 도구이다. 복수 염기서열 정렬문제는 NP-complete 문제군에 속하며, 이 문제를 해결하기 위하여 가장 유용하게 사용되는 알고리즘으로는 dynamic programming이 있다. Dynamic programming은 주어진 입력 염기서열 군들에 대한 최적의 정렬을 생산할 수 있다. 그러나 dynamic programming의 단점은 오랜 실행시간이 요구되며, 때로는 dynamic programming의 속성 때문에 이 알고리즘을 사용하여도 주어진 입력 염기서열 군들에 대한 최적의 정렬을 얻어내지 못하는 경우가 있다. 본 연구에서는 이러한 dynamic programming의 문제를 해결하기 위하여 genetic algorithm을 복수 염기서열 정렬문제에 적용하였다. 본 논문에서는 genetic algorithm의 design과 적용방법을 기술하였다. 본 연구에서 제안된 genetic algorithm을 사용하여 dynamic programming의 단점이었던 오랜 실행시간을 줄일 수 있었으며, dynamic programming이 제공하지 못하는 최적의 염기서열 정렬을 제공할 수 있었다.
Evolutionary computation techniques can solve search problems using simulated evolution based on the ‘survival of the fittest’. Recently, the genetic programming (GP) which evolves computer programs using the genetic algorithm was introduced. In this paper, the genetic programming technique is used in order to design a rule based controller consisting of condition-action rules for an unknown system. No a priori knowledge about the structure of the controller is needed. Representation of a solution, functions and terminals in GP are analyzed, and a method of constructing a fuzzy logic controller using the obtained rule based controller is described. A simulation example using a nonlinear system shows the validity and efficiency of the proposed method.
For a class of nonlinear bilevel programming problems in which the follower's problem is linear, the paper develops a genetic algorithm based on the optimality conditions of linear programming. At first, we denote an individual by selecting a base of the follower's linear programming, and use the optimality conditions given in the simplex method to denote the follower's solution functions. Then, the follower's problem and variables are replaced by these optimality conditions and the solution functions, which makes the original bilevel programming become a single-level one only including the leader's variables. At last, the single-level problem is solved by using some classical optimization techniques, and its objective value is regarded as the fitness of the individual. The numerical results illustrate that the proposed algorithm is efficient and stable.
본 논문은 영상처리에 사용되는 코너점 추출을 위한 GP(Genetic Programming)기반의 코너 검출자를 소개한다. Harris와 SUSAN등 기존의 대표적인 코너 검출자들이 소개되어 왔고, 여러 가지 경험적인 알고리즘들이 연산 시간과 정확도 측면에서 이들 기법을 개선하기 위해서 연구되어 오고 있다. 이들 기법들은 코너점에 대한 특성을 고찰하여 이를 알고리즘화한 것으로 효율성이 높으나, 한편으로 기존의 방식이나 알고리즘에서 크게 벗어난 혁신적인 알고리즘을 발견하기에는 한계가 있다. 본 연구에서는 GP의 진화연산에 의해 자동적으로 코너 검출자를 생성함으로서 새로운 기법의 가능성을 발견하고자 한다. 제안된 방법을 다른 코너 검출자들과 테스트영상을 통해 비교 분석 하였다.
The weight estimation of floating offshore structures such as FPSO, TLP, semi-Submersibles, Floating Offshore Wind Turbines etc. in the preliminary design, is one of direct measures of both construction cost and basic performance. Through both literature investigation and internet search, the weight data of floating offshore structures such as FPSO and TLP was collected. In this study, the weight estimation model with the genetic programming was suggested for FPSO. The weight estimation model using genetic programming was established by fixing the independent variables based on this data. In addition, the correlation analysis was performed to make up for the weak points of genetic programming; it is apt to induce over-fitting when the number of data is relatively smaller than that of independent variables. That is, by reducing the number of variables through the analysis of the correlation between the independent variables, the increasing effect in the number of weight data can be expected. The reliability of the developed weight estimation model was within 2% of error rate.
본 논문은 물체인식이나 영상추적에 사용되는 컬러검출을 위한 GP(Genetic Programming) 기반의 컬러검출 모델을 제안한다. 기존의 컬러검출은 기본적인 RGB 모델에 대한 선형, 비선형 함수의 변환을 사용하거나, 최적화 기법이나 학습기법에 의해 조명 변화에 개선된 컬러 모델을 사용하고 있다. 하지만 대부분의 경우 색상 채널간의 간섭에 의해 다양한 색상에 대한 분류가 어렵고, 조명변화에 강인하지 못하다. 본 연구에서는 GP의 최적화된 학습기법과 모델 생성 기법을 통해 조명변화에 강인하고, 다중의 색상 검출이 가능하며, 파라미터 설정이 필요 없는 컬러 모델을 제안한다. 제안된 방법을 다양한 색상과 조명환경이 다른 영상에 대해서 기존 컬러모델과 비교 분석하였다.
우리나라 대부분의 어선은 침수 및 전복에 의해 야기되는 해양사고에 있어 그 빈도가 높으며, 특히 24m이하의 소형어선에서 두드러진다. 그럼에도 불구하고 소형어선에 대한 복원성 기준이 없을 뿐 아니라 소형어선의 복원성 자료를 찾기란 그리 쉽지 않다. 이에 본 연구에서는 90년 이후 표준어선으로 고시되어 건조 실적이 있는 실적선 10척에 대해 계측된 자료를 활용하여 이를 기초로 Genetic Programming을 이용한 GM 추정식을 도출하였다. 또한 국외 복원성 기준과 GP 추정식을 이용 각각에 대해서 GM을 평가하여, Genetic Programming에 의한 GM추정의 타당성을 보였다. 하지만, 이러한 결과값이 사용되기 위해서는 보다 많은 실적선 Data를 이용한 추론이 요구된다.
Communications for Statistical Applications and Methods
/
제10권3호
/
pp.845-857
/
2003
We explore the use of genetic programming to evolve decision trees directly for classification problems with both discrete and continuous predictors. We demonstrate that the derived hypotheses of standard algorithms can substantially deviated from the optimum. This deviation is partly due to their top-down style procedures. The performance of the system is measured on a set of real and simulated data sets and compared with the performance of well-known algorithms like CHAID, CART, C5.0, and QUEST. Proposed algorithm seems to be effective in handling problems caused by top-down style procedures of existing algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.