• Title/Summary/Keyword: genetic parameters

Search Result 1,532, Processing Time 0.028 seconds

Genetic parameters for marbling and body score in Anglonubian goats using Bayesian inference via threshold and linear models

  • Figueiredo Filho, Luiz Antonio Silva;Sarmento, Jose Lindenberg Rocha;Campelo, Jose Elivalto Guimaraes;de Oliveira Almeida, Marcos Jacob;de Sousa, Antonio Junior;da Silva Santos, Natanael Pereira;da Silva Costa, Marcio;Torres, Tatiana Saraiva;Sena, Luciano Silva
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.9
    • /
    • pp.1407-1414
    • /
    • 2018
  • Objective: The aim of this study was to estimate (co) variance components and genetic parameters for categorical carcass traits using Bayesian inference via mixed linear and threshold animal models in Anglonubian goats. Methods: Data were obtained from Anglonubian goats reared in the Brazilian Mid-North region. The traits in study were body condition score, marbling in the rib eye, ribeye area, fat thickness of the sternum, hip height, leg perimeter, and body weight. The numerator relationship matrix contained information from 793 animals. The single- and two-trait analyses were performed to estimate (co) variance components and genetic parameters via linear and threshold animal models. For estimation of genetic parameters, chains with 2 and 4 million cycles were tested. An 1,000,000-cycle initial burn-in was considered with values taken every 250 cycles, in a total of 4,000 samples. Convergence was monitored by Geweke criteria and Monte Carlo error chain. Results: Threshold model best fits categorical data since it is more efficient to detect genetic variability. In two-trait analysis the contribution of the increase in information and the correlations between traits contributed to increase the estimated values for (co) variance components and heritability, in comparison to single-trait analysis. Heritability estimates for the study traits were from low to moderate magnitude. Conclusion: Direct selection of the continuous distribution of traits such as thickness sternal fat and hip height allows obtaining the indirect selection for marbling of ribeye.

Genetic parameters for milk fatty acid composition of Holstein in Korea

  • Park, Chan Hyuk;Ranaraja, Umanthi;Dang, Chang Gwon;Kim, Jong Joo;Do, Chang Hee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.10
    • /
    • pp.1573-1578
    • /
    • 2020
  • Objective: Milk fatty acid (FA) is a main nutritional component that markedly effects human health. Intentional modification of the FA profile has the potential to improve milk quality. This study aimed at the factors affecting elevated FA levels and the estimation of the genetic parameters for milk FAs in the Korean Holstein population. Methods: Total 885,249 repeated test-day milk records including, milk yield, saturated fatty acids (SFA), polyunsaturated fatty acids (PUFA), monounsaturated fatty acids (MUFA), total unsaturated fatty acids (TUFA), fat and protein percentages were analyzed using CombiFoss FT+ system (Foss Analytical A/S, Denmark). Genetic parameters were estimated by the restricted maximum likelihood procedure based on the repeatability model using the Wombat program. Results: The FA profile varies along with the lactation and the energy balance (EB). With the negative EB in early lactation, mobilization of body fat reserves elevates the desirable FA levels. As a result of that, milk quality is increased by means of nutritionally and usability aspects during the early lactation. Moreover, heritability estimates for SFA, MUFA, PUFA, TUFA were 0.33, 0.42, 0.37, 0.41 respectively. According to the parity wise heritability analysis, first parity cows had relatively lower heritability for SFAs (0.19) than later parities (0.28). Conclusion: Genetic parameters indicated that FAs were under stronger genetic control. Therefore, we suggest implementing animal breeding programs towards improving the milk FA profile.

VLSI Implementation of Adaptive mutation rate Genetic Algorithm Processor (자가적응 유전자 알고리즘 프로세서의 VLSI 구현)

  • 허인수;이주환;조민석;정덕진
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.157-160
    • /
    • 2001
  • This paper has been studied a Adaptive Mutation rate Genetic Algorithm Processor. Genetic Algorithm(GA) has some control parameters such as the probability of bit mutation or the probability of crossover. These value give a priori by the designer There exists a wide variety of values for for control parameters and it is difficult to find the best choice of these values in order to optimize the behavior of a particular GA. We proposed a Adaptive mutation rate GA within a steady-state genetic algorithm in order to provide a self-adapting mutation mechanism. In this paper, the proposed a adaptive mutation rate GAP is implemented on the FPGA board with a APEX EP20K600EBC652-3 devices. The proposed a adaptive mutation rate GAP increased the speed of finding optimal solution by about 10%, and increased probability of finding the optimal solution more than the conventional GAP

  • PDF

The Application of Genetic Algorithms to Estimate the Geotechnical Parameters of Tunnels (터널의 지반계수 추정에 대한 Genetic Algorithms의 적용)

  • 현기환;김선명;윤지선
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.125-132
    • /
    • 2000
  • This study presents the application of genetic algorithms(GA) to the back analysis of tunnels. GA based on the theory of natural evolution, and have been evaluated very effective for their robust performances, particularly for optimizing structure problems. In the back analysis method, the selection of initial value and uncertainty of field measurements influence significantly on the analysis result. GA can improve this problems through a probabilistic approach. Besides, this technique have two other advantages over the back analysis. One is that it is not significantly affected by the form of problems. Another one is that it can consider two known parameter simultaneously. The propriety of this study is verified as the comparison in the same condition of the back analysis(Gens et al, 1987). In this study, it was performed to estimated the geotechnical parameters in the case of weak rock mass at the Kyung Bu Express railway tunnel. GA have been shown for effective application to a geotechnical engineering.

  • PDF

APPLICATION OF GENETIC-BASED FUZZY INFERENCE TO FUZZY CONTROL

  • Park, Daihee;Kandel, Abraham;Langholz, Gideon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.3-33
    • /
    • 1992
  • The successful application of fuzzy reasoning models to fuzzy control systems depends on a number of parameters, such as fuzzy membership functions, that are usually decided upon subjectively. It is shown ill this paper that the performance of fuzzy control systems call be improved if the fuzzy reasoning model is supplemented by a genetic-based learning mechanism. The genetic algorithm enables us to generate all optimal set of parameters for the fuzzy reasoning model based either on their initial subjective selection or on a random selection. It is shown that if knowledge of the domain is available, it is exploited by the genetic algorithm leading to an even better performance of the fuzzy controller.

  • PDF

Optimization of Process Parameters Using a Genetic Algorithm for Process Automation in Aluminum Laser Welding with Filler Wire (용가 와이어를 적용한 알루미늄 레이저 용접에서 공정 자동화를 위한 유전 알고리즘을 이용한 공정변수 최적화)

  • Park, Young-Whan
    • Journal of Welding and Joining
    • /
    • v.24 no.5
    • /
    • pp.67-73
    • /
    • 2006
  • Laser welding is suitable for welding to the aluminum alloy sheet. In order to apply the aluminum laser welding to production line, parameters should be optimized. In this study, the optimal welding condition was searched through the genetic algorithm in laser welding of AA5182 sheet with AA5356 filler wire. Second-order polynomial regression model to estimate the tensile strength model was developed using the laser power, welding speed and wire feed rate. Fitness function for showing the performance index was defined using the tensile strength, wire feed rate and welding speed which represent the weldability, product cost and productivity, respectively. The genetic algorithm searched the optimal welding condition that the wire feed rate was 2.7 m/min, the laser power was 4 kW and the welding speed was 7.95 m/min. At this welding condition, fitness function value was 137.1 and the estimated tensile strength was 282.2 $N/mm^2$.

Advanced Design Technique of Helmholtz Resonator Adopting the Genetic Algorithm (유전자 알고리즘을 이용한 진보된 헬름홀쯔 공명기의 설계기법)

  • 황상문;황성호;정의봉
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1113-1120
    • /
    • 1998
  • For an analysis of some Helmholtz resonators, it is likely to be more appropriate to consider acoustic field within cavity than just the 1-DOF analogous model. However, a design method that considers increased parameters than the lumped model. is not a trivial process due to the trade-off effect among the parameters. In this paper. the genetic algorithm. one of the optimization technique that rapidly converges to global fittest solution and robust convergence. is applied to the design process of Helmholtz resonators. Results show that the genetic algorithm can be successfully and efficiently used to find the resonant frequencies for both lumped model and distributed model.

  • PDF

Optimal Design of Dynamic System Using a Genetic Algorithm(GA) (유전자 알고리듬을 이용한 동역학적 구조물의 최적설계)

  • Hwang, Sang-Moon;Seong, Hwal-Gyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.116-124
    • /
    • 1999
  • In most conventional design optimization of dynamic system, design sensitivities are utilized. However, design sensitivities based optimization method has numbers of drawback. First, computing design sensitivities for dynamic system is mathematically difficult, and almost impossible for many complex problems as well. Second, local optimum is obtained. On the other hand, Genetic Algorithm is the search technique based on the performance of system, not on the design sensitivities. It is the search algorithm based on the mechanics of natural selection and natural genetics. GA search, differing from conventional search techniques, starts with an initial set of random solutions called a population. Each individual in the population is called a chromosome, representing a solution to the problem at hand. The chromosomes evolve through successive iterations, called generations. As the generation is repeated, the fitness values of chromosomes were maximized, and design parameters converge to the optimal. In this study, Genetic Algorithm is applied to the actual dynamic optimization problems, to determine the optimal design parameters of the dynamic system.

  • PDF

Optimal Identification of IG-based Fuzzy Model by Means of Genetic Algorithms (유전자 알고리즘에 의한 IG기반 퍼지 모델의 최적 동정)

  • Park, Keon-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.9-11
    • /
    • 2005
  • We propose a optimal identification of information granulation(IG)-based fuzzy model to carry out the model identification of complex and nonlinear systems. To optimally identity we use genetic algorithm (GAs) sand Hard C-Means (HCM) clustering. An initial structure of fuzzy model is identified by determining the number of input, the selected input variables, the number of membership function, and the conclusion inference type by means of GAs. Granulation of information data with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

Design of Sliding Mode Fuzzy-Model-Based Controller Using Genetic Algorithms

  • Chang, Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.615-620
    • /
    • 2001
  • This paper addresses the design of sliding model fuzzy-model-based controller using genetic algorithms. In general, the construction of fuzzy logic controllers has difficulties for the lack of systematic design procedure. To release this difficulties, the sliding model fuzzy-model-based controllers was presented by authors. In this proposed method, the fuzzy model, which represents the local dynamic behavior of the given nonlinear system, is utilized to construct the controller. The overall controller consists of the local compensators which compensate the local dynamic linear model and the feed-forward controller which is designed via sliding mode control theory. Although, the stability and the performance is guaranteed by the proposed method, some design parameters have to be chosen by the designer manually. This problem can be solved by using genetic algorithms. The proposed method tunes the parameters of the controller, by which the reasonable accuracy and the control effort is achieved. The validity and the efficiency of the proposed method are verified through simulations.

  • PDF