• Title/Summary/Keyword: genetic mobile element

Search Result 7, Processing Time 0.027 seconds

Optimum Array Configuration to Improve Null Steering Time for Mobile CRPA Systems

  • Byun, Gangil;Hyun, Jong-Chul;Seo, Seung Mo;Choo, Hosung
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.2
    • /
    • pp.74-79
    • /
    • 2016
  • This paper proposes an optimum array configuration to improve null steering time for mobile controlled reception pattern antenna (CRPA) systems. The proposed array consists of a single reference element at the center and nine auxiliary elements arranged in a circular array. The array radius and the vertical positions of the center element are optimized using a genetic algorithm in conjunction with a constrained least-mean-square algorithm. The results demonstrate that the proposed array is suitable for mobile CRPA systems without significant side nulls in satellite directions.

Mobile Agent Based Route Search Method Using Genetic Algorithm (유전 알고리즘을 이용한 이동 에이전트 기반의 경로 탐색 기법)

  • Ji, Hong-il;Moon, Seok-hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.599-602
    • /
    • 2014
  • Proposal algorithm in this thesis introduced cells, units of router group, for distributed processing of previous genetic algorithm. This thesis presented ways to reduce search delay time of overall network through cell-based genetic algorithm. With regard to procedures of proposal algorithm, duplicated agents were transferred to the point, where the second, third, and fourth cells were created in order, after the first cell was made, and the agents were engineered to search the shortest path to each cell, and then find the most efficient element through competition.

  • PDF

Spreading of Aminoglycoside-Modifying Enzymes among Escherichia coli Isolated from Clinical Specimens in Chungcheong Province (충청지역의 임상검체로부터 분리된 대장균에 Aminoglycoside-Modifying Enzymes 확산)

  • Sung, Ji Youn;Kwon, Pil Seung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.2
    • /
    • pp.136-142
    • /
    • 2020
  • The antimicrobial resistance rate in bacteria has increased over the last several decades. The transfer of antimicrobial resistant determinants on mobile genetic elements could cause the accelerated emergence and spread of multidrug resistant bacteria. This study investigated the aminoglycoside resistance determinants transferred by mobile genetic elements in a total of 33 aminoglycoside non-susceptible E. coli isolated from clinical specimens in Chungcheong province. 16S ribosomal RNA methyl-transferases (RMTases) and aminoglycoside-modifying enzyme (AME) genes were detected via PCR and DNA sequencing. The most common AME genes were aac(3')-II gene (54.5%), followed by aph(3')-Ia (18.2%) and aac(6')-Ib (15.2%). None of the evaluated RMTase genes were detected in the 33 isolates. Seventeen of the 18 isolates harboring aac(3')-II gene were resistant to gentamicin, and 16 of them were resistant to tobramycin. The 5 isolates harboring aac(6')-Ib gene were all resistant to tobramycin. In this study, we confirmed that one of the important mechanisms of aminoglycoside resistance in E. coli isolated from human is the acquisition of AME genes. Continuing investigations of antimicrobial resistant determinants in bacteria isolated from human may be required to prevent dissemination of antimicrobial resistant bacteria.

Antibiotic Resistance of Staphylococcus Aureus (황색포도알균의 항생제 내성)

  • Kim, Yun-Kyung;Hong, Hae-Sook;Jeong, Jae-Sim
    • Journal of Korean Biological Nursing Science
    • /
    • v.8 no.1
    • /
    • pp.5-14
    • /
    • 2006
  • Staphyloccus aureus is one of the most important pathogens in clinical settings. It is also one of the leading causes of nosocomial infections and the dissemination of multiple drug-resistant strains, mainly methicillin resistant Staphyloccus aureus, and the recent emergence of a vancomycin resistant MRSA is the concern to hospital worldwide. MRSA strains have acquired multiple resistance to a wide range of antibiotics, including aminoglycosides and macrolides. $\beta$-Lactam resistance of methicillin-resistnat Staphyococcus aureus is determined by the function of penicillin binding protein 2'(PBP2') encoded by the methicillin resistance gene mec A. MRSA strains carry methicillin resistance gene mecA, encoded by a mobile genetic element designated staphylococoal cassette chromosome mec(SCCmec). MRSA clones are defined by the type of SCCmec element and the genotype of the methicilline-susceptible Staphyococcus aureus chromosome in which the SCCmec element is integrated.

  • PDF

Alu sequences and molecular features (Alu 서열과 분자생물학적 특징)

  • Park Eun-Sil;Hong Kyung-Won;Kim Heui-Soo
    • Journal of Life Science
    • /
    • v.14 no.6 s.67
    • /
    • pp.1028-1039
    • /
    • 2004
  • During the past 65 million years, Alu sequences have been amplified through RNA-polymerase IIIderived transcripts, and have reached the copy number of about 1.4 million in primate genomes. They are the largest family among mobile genetic elements in human genome and consist of ten percent of the human genome. Alu sequences are thought to be functionless genetically, but many researchers have proved new function and disease implication. Alu elements make the genome insertional mutation, Alu-mediated recombination events, and unexpected splicing site and change gene structures, protein sequences, splicing motifs and expression patterns. In this review, the structure and origin of Alu, consensus sequences of Alu subfamilies, evolution and distribution of Alu, and their related diseases were described. We also indicated new research direction of Alu elements in relation to evolution and disease.

A Gene Functional Study of Rice Using Ac/Ds Insertional Mutant Population

  • Kim, So-Young;Kim, Chang-Kug;Kang, Min;Ji, Seung-Uk;Yoon, Ung-Han;Kim, Yong-Hwan;Lee, Gang-Seob
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.313-320
    • /
    • 2018
  • Rice is the staple food of more than 50% of the world population. Cultivated rice has the AA genome (diploid, 2n = 24) and small genome size of only 430 megabase (haploid genome). As the sequencing of rice genome was completed by the International Rice Genome Sequencing Project (IRGSP), many researchers in the world have been working to explore the gene function on rice genome. Insertional mutagenesis has been a powerful strategy for assessing gene function. In maize, well characterized transposable elements have traditionally been used to clone genes for which only phenotypic information is available. In rice endogenous mobile elements such as MITE and Tos have been used to generate gene-tagged populations. To date T-DNA and maize transposable element systems have been utilized as main insertional mutagens in rice. The Ac/Ds system offers the advantage of generating new mutants by secondary transposition from a single tagged gene. To enhance the efficiency of gene detection, advanced gene-tagging systems (i.e. activation, gene or enhancer trap) have been employed for functional genomic studies in rice. Internationally, there have been many projects to develop large scales of insertional mutagenized populations and databases of insertion sites has been established. Ultimate goals of these projects are to supply genetic materials and informations essential for functional analysis of rice genes and for breeding using agronomically important genes. In this report, we summarize the current status of Ac/Ds-mediated gene tagging systems that has been conducted by collaborative works in Korea.

Current status of Ac/Ds mediated gene tagging systems for study of rice functional genomics in Korea (Ac/Ds 삽입 변이체를 이용한 벼 유전자 기능 연구)

  • Lee, Gang-Seob;Park, Sung-Han;Yun, Do-Won;Ahn, Byoung-Ohg;Kim, Chang-Kug;Han, Chang-Deok;Yi, Gi-Hwan;Park, Dong-Soo;Eun, Moo-Young;Yoon, Ung-Han
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.125-132
    • /
    • 2010
  • Rice is the staple food of more than 50% of the worlds population. Cultivated rice has the AA genome (diploid, 2n=24) and small genome size of only 430 megabase (haploid genome). As the sequencing of rice genome was completed by the International Rice Genome Sequencing Project (IRGSP), many researchers in the world have been working to explore the gene function on rice genome. Insertional mutagenesis has been a powerful strategy for assessing gene function. In maize, well characterized transposable elements have traditionally been used to clone genes for which only phenotypic information is available. In rice endogenous mobile elements such as MITE and Tos (Hirochika. 1997) have been used to generate gene-tagged populations. To date T-DNA and maize transposable element systems has been utilized as main insertional mutagens in rice. A main drawback of a T-DNA scheme is that Agrobacteria-mediated transformation in rice requires extensive facilities, time, and labor. In contrast, the Ac/Ds system offers the advantage of generating new mutants by secondary transposition from a single tagged gene. Revertants can be utilized to correlate phenotype with genotype. To enhance the efficiency of gene detection, advanced gene-tagging systems (i.e. activation, gene or enhancer trap) have been employed for functional genomic studies in rice. Internationally, there have been many projects to develop large scales of insertionally mutagenized populations and databases of insertion sites has been established. Ultimate goals of these projects are to supply genetic materials and informations essential for functional analysis of rice genes and for breeding using agronomically important genes. In this report, we summarize the current status of Ac/Ds-mediated gene tagging systems that has been launched by collaborative works from 2001 in Korea.