• 제목/요약/키워드: genetic instability

검색결과 90건 처리시간 0.03초

실변수 유전자 알고리즘을 이용한 사인형 주름 웨브 보의 최적구조설계 (Optimum Structural Design of Sinusoidal Corrugated Web Beam Using Real-valued Genetic Algorithm)

  • 손수덕;이승재
    • 한국강구조학회 논문집
    • /
    • 제23권5호
    • /
    • pp.581-593
    • /
    • 2011
  • 스티프너로 보강된 플레이트 거더 대신에 주름 웨브를 사용하는 근본적인 장점은 얇은 판으로 형성된 편평한 웨브에서 발생하는 좌굴에 관한 불안정 문제를 해결할 수 있는 것 뿐 아니라 수직 스티프너의 필요성도 함께 해결 됨으로써 경제적인 장점을 제공받게 된다. 따라서 본 연구에서는 사인형 주름 웨브를 가진 보의 구조설계 기법과 실변수 알고리즘을 이용하여 최적화 문제를 다루도록 한다. 구조설계과정과 설계변수들은 EN 1993-1-5, DASt-R015 및 Pasternak 등(2004)을 통해서 구성하며, 주름 웨브의 전단좌굴에 대한 유효한 설계가능영역에 대해 비교, 고찰한다. 구조설계 최적화를 위해서, 목적함수는 사인형 주름 웨브 보의 중량으로 정의하여 최소중량최적화를 수행하며, 제약조건으로는 세장비, 부재력 저항능력 및 보의 허용처짐에 대해서 고려한다. 최종적으로 등분포 하중의 단순보 모델을 해석 대상으로 채택하며, 유전자 연산에 있어서 효율적인 확률변수에 대해 연구한다.

Effects of Mixing Conditions on the Production of Microbial Cellulose by Acetobacter xylinum

  • Lee, Hei-Chan;Xia Zhao
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제4권1호
    • /
    • pp.41-45
    • /
    • 1999
  • Microbial cellulose has many potential applications due to its excellent physical properties. The production of cellulose from Acetobacter xylinum in submerged culture is, however, beset with numerous problems. The most difficult one has been the appearance of negative mutants under shaking culture conditions, which is deficient of cellulose producing ability. Thus genetic instability of Acetobacter xylinum under shaking culture condition made developing a stable mutant major research interest in recent years. To find a proper type of bioreactor for the production of microbial cellulose, several production systems were developed. Using a reactor system with planar type impeller with bottoms sparging system, it was possible to produce 5 g/L microbial cellulose without generating cellulose minus mutants, which is comparable to that of static culture system.

  • PDF

환경성 발암물질 및 유전자 다형성이 위암의 hMLH1 유전자 promoter의 과메틸화와 반복 서열 불안정성, 그리고 p53 및 Ki-ras 돌연변이에 미치는 영향에 대한 분자역학적 연구 (Effects of environmental carcinogens and genetic polymorphisms on the hypermethylation of hMLH1 gene promoter, microsatellite instability and mutations of the p53 and Ki-ras genes in gastric cancer)

  • 남홍매;박주승;윤효영;송영진;현태선;강종원;김헌
    • 대한예방의학회:학술대회논문집
    • /
    • 대한예방의학회 2001년도 제53차 추계 학술대회 연제집
    • /
    • pp.314-315
    • /
    • 2001
  • PDF

Alternative Splicing and Its Impact as a Cancer Diagnostic Marker

  • Kim, Yun-Ji;Kim, Heui-Soo
    • Genomics & Informatics
    • /
    • 제10권2호
    • /
    • pp.74-80
    • /
    • 2012
  • Most genes are processed by alternative splicing for gene expression, resulting in the complexity of the transcriptome in eukaryotes. It allows a limited number of genes to encode various proteins with intricate functions. Alternative splicing is regulated by genetic mutations in cis-regulatory factors and epigenetic events. Furthermore, splicing events occur differently according to cell type, developmental stage, and various diseases, including cancer. Genome instability and flexible proteomes by alternative splicing could affect cancer cells to grow and survive, leading to metastasis. Cancer cells that are transformed by aberrant and uncontrolled mechanisms could produce alternative splicing to maintain and spread them continuously. Splicing variants in various cancers represent crucial roles for tumorigenesis. Taken together, the identification of alternative spliced variants as biomarkers to distinguish between normal and cancer cells could cast light on tumorigenesis.

Potential roles of reactive oxygen species derived from chemical substances involved in cancer development in the female reproductive system

  • Kim, Soo-Min;Hwang, Kyung-A;Choi, Kyung-Chul
    • BMB Reports
    • /
    • 제51권11호
    • /
    • pp.557-562
    • /
    • 2018
  • Reactive oxygen species (ROS) are major sources of cellular oxidative stress. Specifically, cancer cells harbor genetic alterations that promote a continuous and elevated production of ROS. While such oxidative stress conditions could be harmful to normal cells, they facilitate cancer cell growth in multiple ways by causing DNA damage and genomic instability, and ultimately by reprogramming cancer cell metabolism. This review provides up to date findings regarding the roles of ROS generation induced by diverse biological molecules and chemicals in representative women's cancer. Specifically, we describe the cellular signaling pathways that regulate direct or indirect interactions between ROS homeostasis and metabolism within female genital cancer cells.

Random Insertional Mutagenesis with Subtracted cDNA Fragments in Arabidopsis thaliana

  • Euna Cho;Kwon, Young-Myung;Lee, Ilha
    • Journal of Photoscience
    • /
    • 제7권3호
    • /
    • pp.103-108
    • /
    • 2000
  • We have evaluated a new mutagenesis strategy called random insertional mutagenesis with subtracted cDNA fragments. The cDNAs from long day Arabidopsis plants were subtracted by cDNAs from short day plants using PCR based cDNA subtraction. The subtracted cDNAs were inserted between 35S promoter and 3'-NOS terminator regardless of orientation. When the cDNA library was used for the random insertion into Arabidopsis genome by Agrobacterium-mediated transformation, approximately 15% of transformants showed abnormal development in leaf, floral organ, shoot apex. When 20 mutants were analyzed, 12 mutants showed single cDNA fragment insertion and 8 mutants showed more than 2 transgene insertions. Only two mutants among 12 mutants that have single cDNA insert showed consistent phenotype at T2 generation, suggesting the genetic instability of the mutants.

  • PDF

Plasmid Stability and Cloned-Gene Expression in Continuous Culture of Recombinant Escherichia Coli Under Derepressed Condition

  • Nam, Soo-Wan;Kim, Byung-Kwan;Kim, Jung-Hoe
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권1호
    • /
    • pp.1-6
    • /
    • 1994
  • Continuous culture was carried out with a recombinant Escherichia coli W3110/pCR185, which encodes trp-operon enzymes when the temperature is shifted from $37^{circ}C\;t;42^{\circ}C$. Under derepressed condition of $42^{\circ}C$. plasmlid stability and gene expression were analysed as function of the dilution rate. The stability of plasmid increased with the dilution rate, but maximal levels of gene expression (tryptophan concentration) and plasmid DNA content were obtained at the lowest dilution rate, $0.075\;hr^{-1}$. The plasmid instability, observed at low dilution rates, could be explained by the unbalanced biosynthetic state of the recombinant cell harboring a high copy number of plasmid.

  • PDF

Research history of Nannophya Rambur(Odonata: Libellulidae): A recently discovered species in addition to Nannophya koreana Bae in Korea

  • Kim, Dong Gun
    • 환경생물
    • /
    • 제38권2호
    • /
    • pp.308-314
    • /
    • 2020
  • The Nannophya species in Korea was thought to consist of only Nannophya pygmaea. Previous studies on the species, including life history and development, conservation and restoration, habitat characteristics, genetic studies, distribution, behavior, and taxonomy have been conducted. However, a new Nannophya species, Nannophya koreana, was recently discovered in Korea. Moreover, this new species was found to inhabit both Korea and Japan. Thus, the previous studies should be reevaluated in relation to the new species, Nannophya koreana, and the latter should be treated as an endangered species worldwide given the current population instability.

Nuclease Delivery: Versatile Functions of SLX4/FANCP in Genome Maintenance

  • Kim, Yonghwan
    • Molecules and Cells
    • /
    • 제37권8호
    • /
    • pp.569-574
    • /
    • 2014
  • As a scaffold, SLX4/FANCP interacts with multiple proteins involved in genome integrity. Although not having recognizable catalytic domains, SLX4 participates in diverse genome maintenance pathways by delivering nucleases where they are needed, and promoting their cooperative execution to prevent genomic instabilities. Physiological importance of SLX4 is emphasized by the identification of causative mutations of SLX4 genes in patients diagnosed with Fanconi anemia (FA), a rare recessive genetic disorder characterized by genomic instability and predisposition to cancers. Recent progress in understanding functional roles of SLX4 has greatly expanded our knowledge in the repair of DNA interstrand crosslinks (ICLs), Holliday junction (HJ) resolution, telomere homeostasis and regulation of DNA damage response induced by replication stress. Here, these diverse functions of SLX4 are reviewed in detail.

Whole-genome doubling is a double-edged sword: the heterogeneous role of whole-genome doubling in various cancer types

  • Eunhyong Chang;Joon-Yong An
    • BMB Reports
    • /
    • 제57권3호
    • /
    • pp.125-134
    • /
    • 2024
  • Whole-genome doubling (WGD), characterized by the duplication of an entire set of chromosomes, is commonly observed in various tumors, occurring in approximately 30-40% of patients with different cancer types. The effect of WGD on tumorigenesis varies depending on the context, either promoting or suppressing tumor progression. Recent advances in genomic technologies and large-scale clinical investigations have led to the identification of the complex patterns of genomic alterations underlying WGD and their functional consequences on tumorigenesis progression and prognosis. Our comprehensive review aims to summarize the causes and effects of WGD on tumorigenesis, highlighting its dualistic influence on cancer cells. We then introduce recent findings on WGD-associated molecular signatures and genetic aberrations and a novel subtype related to WGD. Finally, we discuss the clinical implications of WGD in cancer subtype classification and future therapeutic interventions. Overall, a comprehensive understanding of WGD in cancer biology is crucial to unraveling its complex role in tumorigenesis and identifying novel therapeutic strategies.