• 제목/요약/키워드: genetic fuzzy

검색결과 783건 처리시간 0.024초

유전자 알고즘을 이용한 자동차 주행 제어기의 최적화 (Optimazation of Simulated Fuzzy Car Controller Using Genetic Algorithm)

  • 김봉기
    • 한국정보통신학회논문지
    • /
    • 제10권1호
    • /
    • pp.212-219
    • /
    • 2006
  • 퍼지 논리 제어기(FLC : Fuzzy Logic Controller)를 사용할 때, 가장 중요한 것은 소속 함수의 범위를 정하는 것과 규칙의 형태를 결정하는 것이다. 소속 함수의 범위나 규칙의 형태는 자금까지 전문가가 임의로 정하는 방법을 사용하였다. 그러나 기존의 방법을 사용하면, 전문가의 주관적인 규칙과 소속 함수가 생성될 수 있고, 소속함수의 경우 최적의 범위를 정확히 예측하기 어려운 단점이 있다. 본 논문에서는 이런 단점을 보완하기 위해, 유전자 알고리즘을 사용함으로써 최적의 소속 함수와 규칙의 형태를 구하려 하였다. 제시하는 방법의 타당성을 검증하기 위해 자동차 주행 제어 문제에 적용시켜 보았다.

Neo Fuzzy Set-based Polynomial Neural Networks involving Information Granules and Genetic Optimization

  • Roh, Seok-Beom;Oh, Sung-Kwun;Ahn, Tae-Chon
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.3-5
    • /
    • 2005
  • In this paper. we introduce a new structure of fuzzy-neural networks Fuzzy Set-based Polynomial Neural Networks (FSPNN). The two underlying design mechanisms of such networks involve genetic optimization and information granulation. The resulting constructs are Fuzzy Polynomial Neural Networks (FPNN) with fuzzy set-based polynomial neurons (FSPNs) regarded as their generic processing elements. First, we introduce a comprehensive design methodology (viz. a genetic optimization using Genetic Algorithms) to determine the optimal structure of the FSPNNs. This methodology hinges on the extended Group Method of Data Handling (GMDH) and fuzzy set-based rules. It concerns FSPNN-related parameters such as the number of input variables, the order of the polynomial, the number of membership functions, and a collection of a specific subset of input variables realized through the mechanism of genetic optimization. Second, the fuzzy rules used in the networks exploit the notion of information granules defined over systems variables and formed through the process of information granulation. This granulation is realized with the aid of the hard C-Means clustering (HCM). The performance of the network is quantified through experimentation in which we use a number of modeling benchmarks already experimented with in the realm of fuzzy or neurofuzzy modeling.

  • PDF

A Water-saving Irrigation Decision-making Model for Greenhouse Tomatoes based on Genetic Optimization T-S Fuzzy Neural Network

  • Chen, Zhili;Zhao, Chunjiang;Wu, Huarui;Miao, Yisheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.2925-2948
    • /
    • 2019
  • In order to improve the utilization of irrigation water resources of greenhouse tomatoes, a water-saving irrigation decision-making model based on genetic optimization T-S fuzzy neural network is proposed in this paper. The main work are as follows: Firstly, the traditional genetic algorithm is optimized by introducing the constraint operator and update operator of the Krill herd (KH) algorithm. Secondly, the weights and thresholds of T-S fuzzy neural network are optimized by using the improved genetic algorithm. Finally, on the basis of the real data set, the genetic optimization T-S fuzzy neural network is used to simulate and predict the irrigation volume for greenhouse tomatoes. The performance of the genetic algorithm improved T-S fuzzy neural network (GA-TSFNN), the traditional T-S fuzzy neural network algorithm (TSFNN), BP neural network algorithm(BPNN) and the genetic algorithm improved BP neural network algorithm (GA-BPNN) is compared by simulation. The simulation experiment results show that compared with the TSFNN, BPNN and the GA-BPNN, the error of the GA-TSFNN between the predicted value and the actual value of the irrigation volume is smaller, and the proposed method has a better prediction effect. This paper provides new ideas for the water-saving irrigation decision in greenhouse tomatoes.

유전 알고리즘을 이용한 퍼지 슬라이딩 제어기 설계 (fuzzy sliding controller design using genetic algorithm)

  • 한종길;유병국;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.964-967
    • /
    • 1996
  • In this paper, we present a fuzzy-sliding controller design using genetic algorithm. We can suppress chattering and enhance the robustness of controlled system by using this controller and do that genetic algorithm can easily find out a nearly optimal fuzzy rule performance of this controller is tested by simulation of car system with two pole.

  • PDF

FUZZY RULE MODIFICATION BY GENETIC ALGORITHMS

  • Park, Seihwan;Lee, Hyung-Kwang
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.646-651
    • /
    • 1998
  • Fuzzy control has been used successfully in many practical applications. In traditional methods, experience and control knowledge of human experts are needed to design fuzzy controllers. However, it takes much time and cost. In this paper, an automatic design method for fuzzy controllers using genetic algorithms is proposed. In the method, we proposed an effective encoding scheme and new genetic operators. The maximum number of linguistic terms is restricted to reduce the number of combinatorial fuzzy rules in the research space. The proposed genetic operators maintain the correspondency between membership functions and control rules. The proposed method is applied to a cart centering problem. The result of the experiment has been satisfactory compared with other design methods using genetic algorithms.

  • PDF

주행속도 추정을 위한 Genetic Fuzzy System의 개발 (The Development of Genetic Fuzzy System for Estimating Link Traveling Speed)

  • 윤여훈;이홍철;김용식
    • 대한산업공학회지
    • /
    • 제29권1호
    • /
    • pp.32-40
    • /
    • 2003
  • In this study, we develop the Genetic Fuzzy System(GFS) to estimate the link traveling speed. Based on the genetic algorithm, we can get the fuzzy rules and membership functions that reflect more accurate correlation between traffic data and speed. From the fact that there exist missing links that lack traffic data, we added a Case Base Reasoning(CBR) to GFS to support estimating the speed of missing links. The case base stores the fuzzy rules and membership functions as its instances. As cases are accumulated, the case base comes to offer appropriate cases to missing links. Experiments show that the proposed GFS provides the more accurate estimation of link traveling speed than existing methods.

APPLICATION OF GENETIC-BASED FUZZY INFERENCE TO FUZZY CONTROL

  • Park, Daihee;Kandel, Abraham;Langholz, Gideon
    • 한국지능시스템학회논문지
    • /
    • 제2권2호
    • /
    • pp.3-33
    • /
    • 1992
  • The successful application of fuzzy reasoning models to fuzzy control systems depends on a number of parameters, such as fuzzy membership functions, that are usually decided upon subjectively. It is shown ill this paper that the performance of fuzzy control systems call be improved if the fuzzy reasoning model is supplemented by a genetic-based learning mechanism. The genetic algorithm enables us to generate all optimal set of parameters for the fuzzy reasoning model based either on their initial subjective selection or on a random selection. It is shown that if knowledge of the domain is available, it is exploited by the genetic algorithm leading to an even better performance of the fuzzy controller.

  • PDF

Information Granulation-based Fuzzy Inference Systems by Means of Genetic Optimization and Polynomial Fuzzy Inference Method

  • Park Keon-Jun;Lee Young-Il;Oh Sung-Kwun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권3호
    • /
    • pp.253-258
    • /
    • 2005
  • In this study, we introduce a new category of fuzzy inference systems based on information granulation to carry out the model identification of complex and nonlinear systems. Informal speaking, information granules are viewed as linked collections of objects (data, in particular) drawn together by the criteria of proximity, similarity, or functionality. To identify the structure of fuzzy rules we use genetic algorithms (GAs). Granulation of information with the aid of Hard C-Means (HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms and the least square method (LSM). The proposed model is contrasted with the performance of the conventional fuzzy models in the literature.

유전자-퍼지 논리를 사용한 도립진자의 제어 (A Control of Inverted pendulum Using Genetic-Fuzzy Logic)

  • 이상훈;박세준;양태규
    • 한국정보통신학회논문지
    • /
    • 제5권5호
    • /
    • pp.977-984
    • /
    • 2001
  • 본 논문에서는 유전자-퍼지 제어 알고리즘에 대하여 논의하고 그 성능을 평가하였다. 이 알고리즘은 퍼지 논리와 유전자알고리즘의 융합된 형태이며, 제어 대상으로는 도립진자 시스템을 모델링 하였다. 퍼지 제어기는 두 개의 입력과 한 개의 출력 변수를 설계하기 위해 적용되며, GA(Genetic Algorithm)는 퍼지 규칙과 소속 함수를 선택, 교차, 돌연변이의 진화 연산을 통해 최적화한다. 컴퓨터 시뮬레이션에 퍼지 제어의 경우 초기 함수 f(0.3, 0.3)일 때 최대 언더슈트가 $-5.0 \times 10^{-2}[rad]$, 최대 오버슈트가 $3.92\times10^{-2}[rad]$으로 측정되었으나, 유전자 퍼지 알고리즘의 경우 최대 오버슈트와 언더슈트가 각각 0.0[rad]으로 측정되었다. 또한 정상상태 도달시간이 퍼지제어의 경우 2.12[sec], 유전자-퍼지 알고리즘은 1.32[sec]로 비교적 안정적으로 나타났다. 컴퓨터 시뮬레이션으로 이 알고리즘을 도립진자 시스템에 적용시키고, 그 성능의 우수성과 효율성을 증명하였다.

  • PDF

강화된 유전알고리즘을 이용한 이중 동조 기반 퍼지 예측시스템 설계 및 응용 (Design of Fuzzy Prediction System based on Dual Tuning using Enhanced Genetic Algorithms)

  • 방영근;이철희
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.184-191
    • /
    • 2010
  • Many researchers have been considering genetic algorithms to system optimization problems. Especially, real-coded genetic algorithms are very effective techniques because they are simpler in coding procedures than binary-coded genetic algorithms and can reduce extra works that increase the length of chromosome for wide search space. Thus, this paper presents a fuzzy system design technique to improve the performance of the fuzzy system. The proposed system consists of two procedures. The primary tuning procedure coarsely tunes fuzzy sets of the system using the k-means clustering algorithm of which the structure is very simple, and then the secondary tuning procedure finely tunes the fuzzy sets using enhanced real-coded genetic algorithms based on the primary procedure. In addition, this paper constructs multiple fuzzy systems using a data preprocessing procedure which is contrived for reflecting various characteristics of nonlinear data. Finally, the proposed fuzzy system is applied to the field of time series prediction and the effectiveness of the proposed techniques are verified by simulations of typical time series examples.