• Title/Summary/Keyword: genetic differences

Search Result 1,148, Processing Time 0.026 seconds

Assessment of Genetic Variability in Two North Indian Buffalo Breeds Using Random Amplified Polymorphic DNA (RAPD) Markers

  • Sodhi, M.;Mukesh, M.;Anand, A.;Bhatia, S.;Mishra, B.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.9
    • /
    • pp.1234-1239
    • /
    • 2006
  • Murrah and NiliRavi are the important North Indian buffalo breeds occupying the prominent position of being the highest milk producers. These breeds are more or less similar at morphological as well as physiological levels. The technique of RAPD-PCR was applied in the present study to identify a battery of suitable random primers to detect genetic polymorphism, elucidation of the genetic structure and rapid assessment of the differences in the genetic composition of these two breeds. A total of 50 random primers were screened in 24 animals each of Murrah and NiliRavi buffaloes to generate RAPD patterns. Of these, 26 (52%) primers amplified the buffalo genome generating 263 reproducible bands. The number of polymorphic bands for the 26 chosen RAPD primers varied from 3 (OPG 06 and B4) to 26 (OPJ 04) with an average of 10.1 bands per primer and size range of 0.2 to 3.2 kb. DNA was also pooled and analyzed to search for population specific markers. Two breed specific RAPD alleles were observed in each of Murrah (OPA02 and OPG16) and NiliRavi (OPG09) DNA pools. RAPD profiles revealed that 11 (4.2%) bands were common to all the 48 individuals of Murrah and NiliRavi buffaloes. Pair-wise band sharing calculated among the individual animals indicated considerable homogeneity of individuals within the breeds. Within breed, band sharing values were relatively greater than those of interbreed values. The low genetic distance (Nei's) value (0.109) estimated in this study is in accordance with the origin and geographical distribution of these breeds. The RAPD analysis indicated high level of genetic similarity between these two important North Indian buffalo breeds.

Genetic Diversity and Structure of the Korean Rare and Endemic Species, Deutzia pdaniculata Nakai, as Revealed by ISSR Markers (한국 희귀 특산식물 꼬리말발도리 집단의 유전적 다양성 및 구조)

  • Son, Sung-Won;Choi, Kyoung Su;Park, Kyu Tae;Kim, Eun-Hye;Park, Seon Joo
    • Korean Journal of Plant Resources
    • /
    • v.26 no.5
    • /
    • pp.619-627
    • /
    • 2013
  • Deutzia paniculata Nakai is a Korean endemic species that has a very restricted distribution in Gyeongsang-do, South Korea. The genetic diversity and structure of five populations of D. paniculata were investigated using 31 ISSR loci from six primers. The Shannon's index (0.429) and genetic diversity (0.271) were relatively higher than those of other rare plant species in Korea. The Miryang (MY) and Yangsan (YS) populations, which have higher flowering rates than the other populations, showed greater genetic diversity than the other populations. An analysis of the molecular variance (AMOVA) showed that 16% of the total variation could be attributed to differences among the populations, and 84% to the differences within populations, indicating moderate gene flow among adjacent populations. The high genetic diversity and low genetic differentiation in the Deutzia paniculata populations, which have a restricted distribution, is considered to be affected by outcrossing of the mating system and abundant individuals in the populations. These results suggest that ex situ conservation strategies are needed to sustain the current genetic diversity of D. paniculata.

Association of the CD226 Genetic Polymorphisms with Risk of Tuberculosis

  • Jin, Hyun-Seok;Park, Sangjung
    • Biomedical Science Letters
    • /
    • v.23 no.2
    • /
    • pp.89-95
    • /
    • 2017
  • Tuberculosis (TB), mainly disseminated by infection of the respiratory tract, remains an unsolved community health problem by Mycobacterium tuberculosis (MTB). However, because of the different susceptibility to MTB, people infected with MTB do not all develop TB. These differences of disease arise from individual genetic susceptibility as well as the property of the microorganisms itself. CD226, one of the genetic factors that influences TB, interact with its ligand PVR and ITGB2. It is induced various cellular responses that contribute multiple innate and adaptive responses. In a previous study, CD226 enhanced immune efficacy induced by Ag85A DNA vaccination that is secreted protein by MTB. The aim of this study was to investigate the association between six genetic polymorphisms of CD226 gene and TB status with Korean population. Our results show that two SNPs of CD226 were identified to associate with tuberculosis. The highest significant SNP was rs17081766 (OR=0.70, CI: 0.54~0.90, $P=5.4{\times}10^{-3}$). According to this study, polymorphisms of CD226 gene affect the outbreak of TB in MTB-infected patients. It is suggested that polymorphism of other genes also associated with immune responses results in susceptibility to TB. The results from this study suggest that not only the characteristics of the microorganism itself but also the genetic background of the individual may affect progression of TB in MTB-infected patients.

Genetic Differences and Variation of Ascidians, Halocynthia roretzi von Drasche and H. hilgendorfi Oka Identified by PCR Analysis

  • Yoon, Jong-Man;Kim, Jong-Yeon
    • Development and Reproduction
    • /
    • v.15 no.4
    • /
    • pp.359-364
    • /
    • 2011
  • The seven selected primers OPA-02, OPA-04, OPA-18, OPD-07, OPD-08, OPD-15 and OPD-16 were used to generate unique shared loci to each species and shared loci by the two species. The hierarchical dendrogram indicates three main branches: cluster 1 (RORETZI 01~RORETZI 11) and cluster 2 (HILGENDORF 12~HILGENDORF 22) from two geographic populations of ascidians, Halocynthia roretzi and H. hilgendorfi. The shortest genetic distance displaying significant molecular difference was between individuals' HILGENDORF no. 14~HILGENDORF no. 19 (genetic distance =0.008). Ultimately, individual no. 02 of the RORETZI ascidian was most distantly related to HILGENDORF no. 21 (genetic distance=0.781). These results demonstrate that the H. roretzi population is genetically different from the H. hilgendorfi population. From what has been said above, the potential of PCR analysis to identify diagnostic markers for the identification of two ascidian populations has been demonstrated. Generally speaking, using a variety of decamer primers, this PCR method has been applied to identify specific markers particular to line, species and geographical population, as well as genetic diversity/polymorphism in diverse species of organisms.

Allozyme Diversity and Population Genetic Structure in Korean Endemic Plant Species : II. Hosta yingeri (Liliaceae)

  • Chung, Myong Gi
    • Journal of Plant Biology
    • /
    • v.37 no.2
    • /
    • pp.141-149
    • /
    • 1994
  • Levels of genetic diversity, population genetic structure, and gene flow in Hosta yingeri, a herbaceous perennial endemic to Taehuksan, Sohuksan, and Hong Islands, were investigated. Starch gel electrophoresis was conducted on leaves for 101 plants collected from three populations. Although the distribution of thespecies is restricted in the islands, it maintains high levels of genetic variatin; 64% of polymorphic loci in at least one population (Ps), the mean number of alleles per locus (Ap) of 1.92, and the mean effective number of alleles per locus (Aep) of 1.52. Overall, mean genetic diversity (Hep=0.250) was substantially higher than mean estimate for species with very similarlife history traits (0.102). Large populaton size, the persistence of multiple generations within populations, high fecundity, predominantly outcrossing breeding system, large size of pollinator visitation areas may be explanatory factors contributing the higher level of genetic diversity maintained within populations. Analysis of fixation indices showed an overall slight excess of heterozygotes (mean FIS=-0.066) relative to Hardy-Weinberg expectations, which may in part be due to the near self-incompatible breeding system in the species. Significant differences in allele frequencies among populaitns were found for 14 out of 16 polymorphic loci (P<0.05). Slightly more than 80% of the total variation in the species was common to all populations (GST=0.198). As expected, indirect estimate of the number of migrants per generation (Nm=0.45, calculated from mean GST) and nine private alleles found in the three populations indicate that gene movement among three isolated island populations was low.

  • PDF

Genetic Diversity in Korean Populations of Glycine soja (Fabaceae)

  • Myong Gi Chung
    • Journal of Plant Biology
    • /
    • v.38 no.1
    • /
    • pp.39-45
    • /
    • 1995
  • Glycine soja Sieb. et Zucc., a predominantly selfing annual, has been served as a reservoir of germplasm for soybean, G. max (L.) Merr., cultivar improvement. This study describes the levels and distribution of genetic variation within and among 22 Korean populations of G. soja using starch gel electrophoresis. The species maintains very similar levels of genetic variability within populations observed in most other annuals. At the population level, the mean percent of polymorphic loci (P) was 32.6%, mean number of allele per locus (A) was 1.32, and mean expected heterozygosity (He) was 0.112. In addition, total genetic diversity (HT) calculated only for polymorphic loci was 0.347. However, significant differences in allele frequencies among populations were found for all loci (P<0.001 in each case) and, on average, about 70% of the total variation in the species is common to all populations. Indirects estimate of the number of migrants per generation (Nm=0.58, calculated from mean GST) indicates that gene flow is low among Korean populations of the species. In addition, analysis of fixation indices revealed a substantial heterozygote deficiency in most populations and at all loci. This indicates that most populations sampled may have been substructed largely due to inbreeding (predominantly selfing) and restricted gene flow, coupled with founder effect and genetic drift. Considering a high genetic divergence among populations, it is recommended that several Korean populations of the species should be preserved, especially such as populations in the eastern and southeastern Korean peninsula with high variation.

  • PDF

The Geographical Distribution and Genetic Distance of Yellowfin Goby (Acanthogobius flavimanus) off the Coast of Korea (한국 연안에 서식하는 문절망둑의 지리적 분포와 유전적 거리)

  • Hyunsang Shin;Youn Choi;Kiyoung Lee
    • Journal of Environmental Science International
    • /
    • v.33 no.4
    • /
    • pp.235-247
    • /
    • 2024
  • A total of 64 individuals of Acanthogobius flavimanus, which inhabit the coast of Korea, were collected from 8 regions from July to August 2023. A haplotype network and a phylogenetic tree were created. The genomic DNA of the target fish species was compared and analyzed with the genomic DNA of four regions in Japan downloaded from the National Center for Biotechnology Information (NCBI). In the haplotype network of Acanthogoboius flavimanus, Eocheong-do (EC) and Goseong (MAJ) exhibited low genetic similarity with other regions in Korea and Japan. The Phylogenetic tree showed that the population of MAJ exhibited differences in genetic structure compared to populations in other regions of Korea and Japan, indicating a distant relationship. Most marine organisms are known to migrate and spread via ocean currents, which is the most crucial factor promoting gene flow through larvae between populations. The haplotype of Acanthogobius flavimanus in MAJ differs from the haplotypes in Korea and Japan. The population in MAJ is believed to have limited genetic exchange due to the North Korea Cold Currents. We identified haplotype patterns based on the geographical distribution of Acanthogobius flavimanus off the coast of Korea and inferred that ocean currents have some influence on genetic distances.

Impact of Gender Differences in DNA on Consumer Buying Behavior

  • Kim, Young-Ei
    • Journal of Distribution Science
    • /
    • v.14 no.2
    • /
    • pp.33-39
    • /
    • 2016
  • Purpose The purpose of this study is to investigate the impact of gender differences in DNA on consumer buying behavior both online and offline and other buying channels to find out effective sales promotion strategies of enterprises. Research design, data, and methodology - This study investigated the relation between chromosome and DNA, DNA and gene, and gene and human behavior of gender. The study shows generic characteristics have influence upon consumers' buying behavior and inclination, and examined the effects of genetic characteristics depending upon the difference of gender DNA upon consumers' buying behavior. Results - Precedent studies on genetics and ethology showed close relations between chromosome and DNA, DNA and gene, and gene and buying behavior of the gene. 'Hunting and protection', one of the genetic characteristics in men's DNA, had great influence upon the consumers' different buying behavior. Conclusion - Gender DNA difference in genetics and ethology disclosed fundamental reasons for the difference in buying behavior and inclination of men and women. It gives implications that marketing strategies of advertising and sales promotion should be made in different ways depending upon men and women.

Genetic Changes of Cornus controversa with Ozone Exposure (오존 노출에 의한 층층나무의 유전특성 변화)

  • 장석성;이석우;이재천;한심희;김홍은
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.4
    • /
    • pp.226-232
    • /
    • 2003
  • To examine the effects of ozone (O$_3$), one of the major air pollutants in the city area, on genetic changes in Cornus controversa Hemsl., we compared genetic structures between sensitive (S) and tolerant (T) tree groups of C. controversa fumigated with ozone using isozyme markers. The genetic structures were measured in terms of allele and genotype frequencies determined at ave polymorphic enzyme loci. Marked genetic differences between the two groups were detected at three loci (Lap-2, Mdh-1 and Skdh-1). Genetic parameters, genetic multiplicity, genetic diversity and heterozygosity showed that the tolerant group retained greater genetic variation than did the sensitive group. Results of the study were congruent with the general expectation that the more heterozygous individuals and/or populations exhibit higher resistance to various stress factors.

Analysis of Genetic Characteristics by Biochemical Genetic Markers in Korean Native Chicken (생화학적 유전표지인자에 의한 한국재래닭의 유전특성 분석)

  • 이학교;정호영;한재용;정의룡
    • Korean Journal of Poultry Science
    • /
    • v.23 no.3
    • /
    • pp.135-144
    • /
    • 1996
  • This study was carried out to clarify the genetic constitution of biochemical polymorphic loci controlling blood protein and enzymes as genetic rnarkers in Korean native chicken(KNG) population Blood samples were collected from 230 KNG representing three colored-lines(reddish-, yellowish- and blackish- brown) raised in Daejeon branch of National Livestock Research Institute. Eight blood marker loci, transferrin(Tf), post-albumin(Pas), albumin(Alb), amylase-1(Arny-1), es-terase-1(Es-1), alkaline phosphatase(Akp), catalase(Cat) and hemoglobin(Hh) were analyzed by using starch, agarose and polyacrylamide gel electrophoresis. Based on the gene frequencies of polymorphic marker loci, the genetic characteristics of KNF population was analyzed, and the genetic ariability within population was quantified. The genetic relationships between KNC and other native fowls or improved breeds were also estimated. The gene frequencies of Tf, Pas and AIb loci were similar to those of improved breeds among the seven biochemical polymorphic loci, while gene frequencies of Cat and Es-i loci were remarkably different between KNC and improved breeds. Gene frequencies of amy-i and Akp loci were similar to those of New Hampshire and Rhode Island Red and White Leghorn, respectively. However in comparison with other improved breeds, great differences were observed in gene frequencies of these loci The average heterozygosity, effective number of alleles and homogeneity index for the seven loci combined were estimated to be .334, 1.639 and .373, respectively. Based on the dendrogram and genetic distances, the KNC was genetically closer to New Hampshire, Plymouth Rock and Rhode Island Red breeds than to the White Leghorn breed.

  • PDF